Skip to main content
Mobile menu
PCB設計
Altium Designer
世界中の設計者に支持される回路・基板設計ソフトウェア
CircuitStudio
エントリーレベルでプロ仕様のPCB設計ツール
CircuitMaker
個人、オープンソース、非営利団体のための無料PCB設計ツール
Altiumに乗り換える理由
他のPCB設計ツールからAltiumに乗り換える理由と方法を確認する
ソリューション
Altium Enterprise ソリューション
デジタルトランスフォメーションへの 最終ステップ
電子部品プラットフォーム
世界中の技術者が利用するOctopart
Altium 365
リソース&サポート
製品情報
無償評価版
ダウンロード
拡張機能
リソース&サポート
Renesas / Altium CEO Letter To Customers
全てのリソース
サポートセンター
マニュアル
Webセミナー
コミュニティ
フォーラム
バグの報告
アイディア
教育
専門家育成トレーニング 資格取得プログラム
Comprehensive Career Training for Altium Software and Design Tools
大学・高専
Academic Licenses, Training, Sponsorships and Certificates for Higher Education
オンラインストア
Search Open
Search
Search Close
サインイン
PCB設計
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
無料トライアル
Easy, Powerful, Modern
The world’s most trusted PCB design system.
Learn More
PCB設計
リアルタイムクロック設計でベストプラクティスに従うべき理由
目覚まし時計が午前3時15分で止まっていたせいで、学校に遅刻した経験はありませんか? 高校のとき、目覚まし時計が鳴る音はあまり心地よいものではなかったものの、母が呼ぶ大声ほどには耳障りではありませんでした。時計が止まったのは電池切れのせいだとわかっていましたが、もっと注意していれば、電池が少なくなるにつれて時計の動きが遅くなことに気付いていたでしょう。そうすれば電池が切れる前に交換して、母の金切り声を聞かずに済んだでしょうに。すっかり大人になった今では、学生時代の目覚まし時計ではなく、 リアルタイムクロック (RTC)の設計に取り組んでいます。一般に、RTCは、設定された基準に対して現在の時間を刻み続ける集積回路(IC)です。RTCは通常、メインシステムの電源が切られた後も動作を続けるように設計されており、最小限の電力しか消費しません。仮にシステムのRTCが故障した場合、その影響は母親のお説教よりもずっと悪いものになります
記事を読む
半導体ファイバーは光ファイバーケーブル伝送ラインに置き換わるのか
インターネットは、奇妙で魅力にあふれた場所です。私が子供の頃はダイヤルアップ インターネットの末期で、チャットルームが全盛の頃でした。今では、私はたまにインターネットでいくつかのオンラインゲームを楽しんでいますが、このようなものは当時は不可能でした。私の電話ルーターや銅線によるネットワークでは、画像をロードするための帯域幅を確保するのがやっとでした。今日のネットワークは、非常に高速な光ファイバーにアップグレードされました。これらの通信システムは確かに昔の銅線によるものより優れていますが、依然としていくつかの欠点もあります。このため研究者たちは、シリカの代わりに半導体を使用する新しい種類の光ファイバーを探求してきました。この新しい種類のケーブルは、広域ネットワークとPCBの両方において、信号伝送に役立つ可能性があります。 光ファイバー 多くの人々は、インターネットのことを、雲の中かどこかに設置されていて接続可能な「何か」と考えていますが
記事を読む
低電力ワイヤレス通信用のRFテクノロジー: Ambient Backscatter
私は家族の再会が好きですが、私の拡大家族は40人もいるため、これはかなりの大事になります。カードで遊んだり、水泳をしたり、または夕食のテーブルなどどこでも、常に誰かが冗談を言ったり、話を始めたりします。実際に、ほとんどの人々が話を始めるため、皆に聞いてもらうには叫ばなくてはならないこともあります。電磁スペクトルの中での通信も、このように困難な場合があります。デバイスは多くの場合、データを伝送するために、空中に自分の信号を「叫ぶ」必要があります。この伝送には電子機器とエネルギーが必要で、一部のデバイスでは容積やバッテリー駆動時間の関係で実現できません。ワシントン大学の研究グループは、Ambient Backscatterによる通信を使用して、これらの問題点の解決を試みています。この方法により、データの伝送に必要な回路と電力が何桁も減少する可能性があります。Ambient Backscatterがワイヤレスネットワークへ実際に使用可能なら
記事を読む
ウェアラブル デバイス: 機能的でお洒落なテクノロジー
両親が若い頃の古い写真を見て、「どうしてこんな見苦しい服を着ていたんだろう?」と思うことがありますか? 私が特に気になるのは大きな眼鏡です。ファッションは重要です。流行は変化にするせよ、そのことは昔から変わっていません。モノのインターネット(IoT)やウェアラブル電子機器において、美観は多くの場合に軽視されています。設計者は機能と外観を同時に開発するのではなく、機能を先に決めて、外観とフォームファクターは後回しにする傾向があります。製品を売るためには、ファッションも重要であることを理解する必要があります。外観と機能を適切に両立させた、3つのデバイスを紹介しましょう。 上品なギーク 映画やテレビ番組を見れば、ギークは以前としてあまり外見が良くないことに気づくでしょう。Fonzieは、年をとってもBig Bang TheoryのSheldonよりもお洒落です。電子機器を購入する人々はオタクのように見られることを望まず、多くのウェアラブルはこの点で失敗しています。 IoTは 我々が予測したほど
記事を読む
PCB設計におけるDRC: 設計の失敗の防止
私は長年にわたって小さなボートを所有しており、水上での趣味に使用していましたが、いくつかの重要なルールに従う必要がありました。ルールの1つは、ボートを水に浮かべる前に、排水プラグを必ず取り付けるということです。新しいボートをが沈んでしまい、回収するために泳ぐくらいなら、ただ泳ぐため水に入る方がはるかに安くつきます。 ルールは自分たちを保護するためのものだということは、誰でも知っています。しかし、不注意または意図的に、ルールが無視されることもあります。回路基板の設計にも、従うべきルールがあります。さいわい、今日のPCB設計ソフトウェアにはデザインルール チェック(DRC)が組み込まれています。設計者はこれらを使用するだけで十分です。 ルールは設計の失敗を防止するためのものです。 基板のDRC 回路基板の設計のサイズや複雑性にかかわらず、デザインルールのチェックは行う必要があります。特定の設計は非常に単純なため、DRCに時間を費やす価値はないと主張する人もいます。しかし、最も単純な設計でも
記事を読む
高電圧PCB設計についての検討事項
私は以前、高電圧の応用は電力工学だけに必要なものだと考えていました。発電所や変電所で働く気はまったくなかったので、高電圧PCBの設計について学ぶことを免れていたわけです。ところが、空間の応用に興味を持った時点で、その考えが間違っていたことに気付きました。そして、怠惰な自分と向き合わざるを得なくなってしまったのです。高電圧の応用は、製造や発電所から医療や航空宇宙まで、ほぼすべての業界に存在しています。 高電圧の応用に向けたPCBの設計では、設計や製造の全工程でさまざまな内容を検討しなければなりません。基板は過酷な状況で稼働することが条件となっており、部品や材料の寿命に大きな影響を受けます。これに挑戦しようという意気込みがある場合は、レイアウトの作成を開始する前に、いくつかの検討事項を確認しておきましょう。 動作周波数についての検討事項 製品の動作周波数は、 ESD と同様に高電圧設計に影響を及ぼし、 ノイズ管理 は基板に影響を及ぼします。これは、高周波が低い電圧でアーク放電を成し
記事を読む
不十分なデータ管理に起因する開発後の問題の評価
どのような設計者やチーム、企業にとっても、設計をリリースまで漕ぎつけたときは安堵のため息をつける瞬間でしょう。しかしながら、この瞬間が常に喜びに満ちたものになるとは限りません。プロジェクトの完了には、次の2種類があります。a)ドキュメント化プロセスに何の不備もなく無事設計を完了しており、リリースの準備を開始できるケース。b)設計は問題なく完了しているが、データ管理プロセスに小さな(または大きな)誤りがあるため、修正と製造の後戻りが必要であり、製品リリースを遅延せざるを得ないケース。データ管理プロセスに何らかの不備がある場合、開発後はすべての局面を通じて後悔し続けることになりかねません。 開発後の懸念と後戻りの可能性 開発後の局面で懸念が持ち上がるのは当然のことであり、特にデータ管理についての不確定要素がある場合はなおさらです。ECADデータ資産の管理が十分でないと、ドキュメント化の方法が時代遅れになる傾向にあります。その場合、データ管理システムでエラーが非常に発生しやすくなり
記事を読む
PCB回路設計で微細な短絡の発生を防止する方法
デートで出掛けたディナーのパスタに髪の毛が入っていたということほど、悲惨な話があるでしょうか。口に入れた後に気付いたとすればなおのことでしょう。この悲劇を避ける方法は2つあります。ひとつは、料理を口に運ぶ前に髪の毛が入っていないかどうかを徹底的に確かめること。もうひとつは、料理に髪の毛が入ってしまう危険を完全になくすこと(ただし、この場合は別のレストランを選ぶ必要があるかもしれません)。PCBの設計では、2~3本の髪の毛がそれほど大きな損害をもたらすことはありませんが、QCではどんなに微細な短絡も大問題になります。短絡を見つけるのには時間がかかるうえ、その修正コストはPCB実装よりも高額になることがあります。レストランの食事に髪の毛が入っていては困るように、設計でも短絡が発生するのを回避しなければなりません。とはいえ、人間はミスをするものです。短絡を完全には回避できないかもしれませんが、成功事例を実践して危険を最小限にすることは可能なはずです。 微細な短絡とは何か?どのように発生するのか
記事を読む
高電圧PCB設計: 沿面距離と空間距離
高電圧の応用には、通常のPCBよりも厳しい設計パラメータが必要になる 大学生のとき、私は電気化学エッチングの実験を行いました。その経験をずっと履歴書に記載していたのは、高電圧源や危険な化学品を使った実験について、面接官が必ず話を聞きたがったからです。ところが、危険な職場環境をまったく意に介さない人間が求められる仕事には就きたくないと後になって気付きました。 それがきっかけで、私は高電圧設計について学び始めました。高電圧の製品に要求される基準には圧倒されましたが、それと同時に安心もしました。私たちが作成した高電圧製品を大学院生たちが使うのを止めることはできないものの、基板がきちんと保護されているのが分かれば心配する必要はありません。 安全の確保にあたって、特定のスペースルールが必要になる場合とは 高電圧PCB設計に必要となる厳しいスペースルールは、すべてのPCB設計に適用されるわけではありません。一般的には、製品の通常の作動電圧が30VACまたは60VDC以上になると、基板設計に
記事を読む
モノのインターネットのハードウェア プラットフォームのフレキシブル化
子供の頃に熱中したり執着したりしたものを覚えていますか? 私が若かった頃、誰もがポケモンと、子供でも触れる電子機器に熱中していました。これら2つの熱狂はやがて、 たまごっち という最終的な流行に結びつきました。これは大ヒットして、携帯電子機器の人気と、小さく非現実的な動物に対しての子供たちの愛情を生み出しました。最近では、PCBにおける2つの熱狂、すわなちフレキシブル電子回路とモノのインターネット(IoT)が結合しました。自作用開発基板のようなハードウェア プラットフォームはIoTの誕生に役立ち、フレキシブル ハイブリッドエレクトロニクス(FHE)はそのIoTを成熟へ導くために役立っています。技術者は、Arduinoのような大きなブランドと互換性のあるフレキシブルな基板や周辺機器の設計を開始しています。IoT開発者が必要とするコンポーネントを搭載した、使いやすい基板を設計することで、この動向に加わることができます。 フレキシブルなハードウェア プラットフォームの利点
記事を読む
設計の複雑化と小型化の影響
その登場以来、電子機器は、小型化、高速化、効率化されてきました。しかし、小さくなった基板に、配置するコンポーネント、ピン、接続を増やそうとすると、いくつかの問題が発生します。これらの課題には、熱、BGAブレークアウト、サイズ自体が含まれます。あの小さく奇妙な形をした筐体に、基板をどのように収めるか、ということです。 簡単な統計をいくつか挙げます: 過去10年間で平方インチ当たりのピン数が3倍になった一方で、基板面積は比較的一定に維持されました。 15年間で、部品1個当たりの平均ピン数が4 ~ 5分の1に減った一方で、平均部品点数が4倍になりました。 設計のピン数は3倍になり、ピン間の接続数は倍増しました。 これらの増加のペースが近いうちに落ちるとは考えにくく、設計時にこれらの問題に対処する方法を理解することが重要です。ここでは、これらの問題の一部である、多ピンのBGA PCBやHDI PCBの配線に注目しましょう。 BGAブレークアウト 多くの場合、手動でのBGAのプランニングと配線には
記事を読む
設計ドキュメントの主要なPCB設計要素の捕捉
設計ドキュメント作成のうち最も重要でありながら、多くの場合に回避される要素の1つは、正式な設計ドキュメントです。設計を完了し、製造、実装、検証ドキュメントを生成しただけで、業務が完了したとみなしてしまうことは珍しくありません。システム仕様、設計の意図、設計プロセス、仕様の追跡可能性を正しく捕捉することは、時間を要し、骨の折れる作業ですが、極めて重要です。設計ドキュメントでは、システムの設計のあらゆる側面を捕捉し、関連するすべての設計情報へ簡単にアクセスできる必要があります。しかし、製造や実装の図面に含まれない設計の詳細をどのように捕捉すればいいのでしょうか? 設計の全ての側面を設計ドキュメントに表現する あらゆる設計において、設計ドキュメントの作成は計画段階で開始し、仕様から始める必要があります。設計ドキュメントの対象である設計が、より大きなシステムのサブシステムである場合、システム全体の仕様を提示してから、システム全体からそのサブシステムまで
記事を読む
USB Type-C: 電力およびデータ転送の最先端
PCB設計に関していえば、基板における不均衡な電力は、設計者の自信を打ち砕く可能性があります。電力の不均衡は、設計プロセスの形勢を瞬時に変える可能性があり、相当量の修正作業を行うことなく状況を打開することは至難の業です。それでは、電圧レベルを適正に保つためにはどうすればよいでしょうか。また、電力消費を抑えながらデータ転送量を増やすことはできるのでしょうか。まず第一に、単体デバイスのさまざまな電圧要件に対応する、「発熱」せずに複数機能を処理できる手段が必要です。これは実現するようには思えませんが、接続性に関するより実用的な方法によって可能になります。 データ送信の標準的な方法 より高度なシステムでは、情報の伝送方法として、多くの場合ワイヤレス技術によるデータ転送が好まれます。携帯端末でも状況は同じです。効率的なワイヤレス技術は、多くの携帯電話ユーザーがよく知っているように、端末の電力供給をあっという間に消耗させます。 また、携帯電話のようなワイヤレス技術は、付属電源が必要です。例えば
記事を読む
リジッドフレキシブル基板設計の構造整合性と課題
リジッドフレキシブルの出現とともに、これまでよりも小さいフォームファクターに、より多くの部品を配置できるようになりました。さらに、リジッドフレキシブル設計は、重量や信頼性においてもリジッド設計より有利です。リジッドフレキシブルの利点に限定してブログを書くこともできますが、それは別の機会に回します。リジッドフレキシブルは非常に優れていますが、取り扱いの際に知っておくべき事項がいくつかあります。この記事で重点を置きたいのは、リジッドフレキシブル設計の際の配線に関する課題です。その他の課題についてのご確認を希望される場合は、そのトピックに関する Altiumのホワイトペーパー をご覧ください。 フレキシブル領域の配線 PCB設計でフレキシブル領域の配線を行う場合、留意すべき事項がいくつかあります。言うまでもなく、フレキシブル設計とリジッド設計の主な違いは、フレキシブルな部分が動くということです。 例えば、フレキシブル基板向けのIPC 2223C設計基準による定義では
記事を読む
汎用コントローラーを2つのPCBに分割した方がよい理由
私は常に、成功のためには他者の成功を真似し、失敗を避ける必要があると考えてきました。私が職務を始めた頃は、Raspberry Piのような単一基板のコンピューターは存在せず、Arduinoを産業アプリケーション向けに真剣に考える人はいませんでした。私が自分で設計した汎用コントローラーのメンテナンスを初めて行うことになったときの苦労を想像してみてください。それは、火災警報のコントローラーで、50本を超えるワイヤーが手作業でネジ止めされていました。私は、障害のある8ピンのEEPROM(Electrically Erasable Programmable Read-Only Memory)を交換する必要がありました。顧客は不満を持っており、私はこの作業を迅速に、間違いなく行うよう圧力をかけられていました。このときから、私は汎用コントローラーの設計を複数の物理モジュールに分割するようになりました。同様に今日、Raspberry Pi は産業用アプリケーションに使用されています
記事を読む
PCB回路製品: 修理できるように設計するべきか?
自分の手掛けたものを誰かに修理してもらわなければならないとき、私は技術者としての落ち度を感じてしまいます。それが電子機器であれ、たまにしか担当しない木工品であれ、まずは自分で何とかしてみるまでは助けを求めたくありません。ただし、配管となると話は別です。その場合は すぐさま 助けを呼ぶことになります。 自分が手掛けた製品は自分で修理したい―そんな衝動が働きますが、問題なのは多くの企業がそれを求めていないことです。ケースを空けるために専用のドライバーが必要になったために、ラベルを破いて正式に保証を無効にしたことは数え切れないほどです。しかも、バッテリー交換のためだけにです。ここで専門的なアドバイスを1つお届けしましょう。どうしてもバッテリーを交換したいのに、細長いネジ穴に対してドライバーが小さすぎるとします。この場合は、プラスドライバーと輪ゴムでどうにか対処できることがあります。まず、輪ゴムを細長いネジ穴の上に置きます。不安定な細長いネジ穴にドライバーがしっかりと、はまるまで押し込み
記事を読む
PCBの複雑化に対応するための設計手法
用途はわかりませんがとにかく小さい回路です 世の中の動きが自分より少々速いと感じたことはありませんか? 新語、アプリ、ヘアスタイルなど、さまざまなトレンドがあります。時代遅れのファッションセンスに加えて、複雑なPCB設計でも後れをとっているかもしれません。IoT(Internet of Things)とウェアラブル電子機器の出現のはざまで、PCB設計要件はますます高度になっています。この流れに遅れないためには、PCBの小型化、高速化、柔軟化を可能にする設計技術に常に注意を払う必要があります。また、設計動向への迅速な対応に加え、場合によっては必要な技術をどのように実装するかについてのトレーニングも必要になります。 小型化 昨今の衣料品の興味深いトレンドのひとつは、何もかもが小さくなっているということです。シャツは体にぴったりしたサイズになり、短パンやスカートの丈は短くなっています。コネクテッドデバイスがますます小さくなるにつれて、PCBもこのトレンドに乗っているようです
記事を読む
Pagination
First page
« First
Previous page
‹‹
ページ
46
現在のページ
47
ページ
48
ページ
49
ページ
50
ページ
51
Next page
››
Last page
Last »
他のコンテンツを表示する