Skip to main content
Mobile menu
Discover
Develop
Agile
リソース&サポート
リソース&サポート
ラーニングハブ
サポートセンター
マニュアル
Webセミナー
Altium Community
フォーラム
バグの報告
アイディア
Search Open
Search
Search Close
サインイン
PCB設計
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
ホーム
PCB設計
PCB設計
業界をリードする専門家によるPCB設計の最新情報をご覧ください。
Learn How Altium Supports PCB Designers
Overview
All Content
ウェビナー
Filter
見つかりました
Sort by
最新
人気順
タイトル(昇順)
タイトル(降順)
役割
ECADライブラリ管理者
電気技術者
技術マネージャー
ITマネージャー
機械エンジニア
PCB設計者
購買・調達マネージャー
ソフトウェア
Altium Designer
Altium 365
Assembly Assistant
BOM Portal
Configurable Workflows
GovCloud
MCAD CoDesigner
Octopart
Requirements & Systems Portal
SiliconExpert
Z2Data
コンテンツタイプ
ガイドブック
ビデオ
ウェビナー
ポッドキャスト
ホワイトペーパー
適用
Americas
EMEA
ANZ
APAC
歪んだPCBを修正できますか?
1 min
Blog
この記事に深入りする前に、簡単な答えをお伝えしましょう。既に製造されたPCBの反りを修正することは、おそらくできません。適切な材料が選択され、基板が正しくリフローに入れられる限り、組み立て中に反りが生じないように防ぐことはできます。 この記事では、そのようなポイントのいくつかについて説明し、反りが生じた基板を回復させるためのポイントをいくつか検討します。未組み立ての回路基板の反りを修正することは高度な作業であり、基板をガラス転移温度以上に加熱して圧迫する必要があります。個人の設計者であり、メーカーから裸の回路基板や組み立てられた基板のバッチを受け取った場合、それらを修正することはできません。これらを廃棄する方が良いでしょう。この記事の後半でその理由を説明します。 PCBの反りを防ぐ方法 PCBの反り防止を見る前に、反りの原因についていくつか見てみましょう: パネル内の混在した向き: パネル内での向きを混在させて パネルあたりの基板数を最大化することは、誘惑的です。 CTEとTgの層間不一致:これらの値が一致しない場合、特定の層にストレスが蓄積され、変形を引き起こし、歪みが生じます。 非対称スタックアップ:CTE/Tgの不一致に加えて、層スタックの非対称性が大きい場合、非対称性は一部の層に平面ストレスを与え、歪みを引き起こします。 リフロー/ウェーブ:過度のリフロー、ウェーブ、および再作業サイクルを繰り返すことで、歪みが蓄積されることがあります。また、はんだ付け中に基板をクランプすると、歪みが生じることがあります。 これらは、設計者と製造者が対処する必要がある基板の歪みの主な原因のいくつかです。 パネルサイズのための設計 常にこれを行うことができるわけではありませんが、スループットと収率の目的でこれを考慮することは重要です。混在した向きを必要としないように基板を設計できれば、歪みのリスクを回避できます。パネル内の基板の混在した向きは、一部の基板がガラス繊維のストランドの長軸およびパネルの長辺に沿っていないことを意味します。 ほとんどの場合、これは問題になりません。しかし、以下のガイドラインのいずれかに従わない場合、混在する向きが原因でボードの一部が反りやすくなる可能性があります。その結果、同じパネル内の一部のボードが反ってしまい、他のボードは反らない可能性があります。以下のガイドラインのいくつかを無視してボードを設計する必要がある場合は、可能であれば、反りやすいボードをすべて同じ向きに配置できるようにしましょう。つまり、ボードの長い辺をパネルの長い辺に沿って配置します。 スタックアップでの材料のマッチング これは、設計者が製造業者と協力して、ボードが仕様通りに製造できるようにし、生産中にボードが反らないようにする必要がある場面です。自分自身でPCBスタックアップを設計し、異なる材料を混合している場合は、Tg値とCTE値が互いに互換性があることを確認してください。言い換えれば、温度がTgを超えたときのTg値とCTE値はすべて似ている必要があります。 これを行う理由は、PCBスタックアップ内のすべての材料のCTE値に一般的な不一致を防ぐためです。一般に、CTEの不一致はスタックアップ全体で不均一な膨張を引き起こし、これは既に運用中の信頼性の問題を生じさせることが知られています。 特に高アスペクト比のビアでの亀裂。同じタイプのCTEの不一致もスタックアップの設計で避けるべきです。 銅を対称に配置する これは、私が協力するメーカーと矛盾するように古い設計者が試みる場合の一例です。銅の配置は、ボードが反りを伴わずに製造される唯一の方法としてしばしば引用されます。完全に反りをなくすことはできませんが、ボードの反りが組み立て欠陥を引き起こさないほど低くすることはできます。銅の配置は、設計者が対向する層上の銅をバランスさせるために使用できるツールの一つです。
記事を読む
高周波基板用に最高のRF設計ソフトウェアを使用します
1 min
Blog
高周波数とデジタルインターフェイスに対応する無線周波数システムの設計は難題であり、最適なRF設計ソフトウェアツールが必要です。高GHz帯のRFエンジニアリングは、最高のRF設計ソフトウェアを援用して、正確な基板トレース配線、レイヤスタック設計、および回路設計を保証します。Altium DesignerをRF設計プロセスに使用して、次のGHz帯システムを製造に移行します。 Altium Designer 回路設計機能、強力なPCBエディタ、 RFエンジニアリング専門家向けのシミュレーション機能を備えた統合回路基板設計アプリケーション。 多くの電子部品製造エンジニアはデジタル設計のコンセプトに精通していますが、 RF設計に特異な点についてはどうでしょうか。高周波で動作し、基板上のデジタルインターフェイスで動作するRFシステムでは、適切な手順が実行されない限り信号品質が低下するシグナルインテグリティの問題が、多数発生する可能性があります。最高のRF設計ソフトウェアを使用する設計者は、RFシステム用の最適な基板レイアウト技法に従うと同時に、最良のシミュレーションおよび分析機能によってシステムを評価することができます。GHz帯周波数に対応するRF基板を設計する必要がある時は、業界最高のデジタル、RF、および混在信号設計ソフトウェアである Altium Designerのような総合設計プログラムを使用します。 RFエンジニアリングにおける正確な回路設計 すべての新規の電子システムは回路設計として始まり、電子部品製造エンジニアはRFエンジニアリングのための強力な設計とシミュレーションのツールを必要とします。RF回路設計では、高周波数で動作でき、またシステムの構築、および実際のコンポーネントを使用して設計を評価できるシミュレーションが必要です。フィルタやマッチングネットワークなどの回路を経由した信号伝播を理解するには、システムレベルのデザインアプローチが必要です。すべてのソフトウェアツールがこれらのタスクに対応できるわけではなく、多くの設計者は、フィールドソルバーを回路設計エディタおよびSPICEシミュレーターと組合せてRF設計を作成せざるを得ません。 必ず、統合されたコンポーネントライブラリと基板サプライチェーンへの接続を備えた最適な回路設計ツールを使用してください。Altium Designerの回路図エディタには、 SPICEシミュレーションの標準コンポーネントモデルに対応する強力なSPICEシミュレーションエンジンが搭載されています。1つのプログラムですべてにアクセスできるため、高品質の電力コンバータを設計し、その設計を迅速かつ容易に検証できます。 混在信号の設計とシミュレーションのツールを備えたRF設計ソフトウェア Altium Designerには、 RF回路設計および分析に使用するシミュレーションモデルを使って、非常に多くの実際のコンポーネントにアクセスできる最高の回路図エディタが付属します。設計者は、 RF設計プロセスを効率化すると同時に、システムレベルのデザインと分析を支援できます。Altium
記事を読む
アイダイアグラムとは?
1 min
Blog
PCB設計者
シミュレーションエンジニア
電気技術者
アイダイアグラムは、高速チャンネル内の信号の動作と、反復励起に対するチャンネルの応答について知る必要があるすべての情報を提供します。
記事を読む
非機能パッドがPCB設計に与える影響
1 min
Blog
非機能パッドに関する議論は、しばしば全てか無かの議論として枠組みされ、信頼性や信号完全性への影響についての議論が豊富にあります。ビアにそれらを残すべきか、あるいは全てのビアからそれらを取り除くべきか?どのような設計決定にもトレードオフがあり、通常、設計のある側面が他のすべてを優先します。非機能パッドの使用に関して一般化されたルールはないため、設計者は特定のアプリケーションを考慮して、レイアウトに非機能パッドを含めるべきかどうかを決定する必要があります。 この記事では、信号完全性、信頼性、およびルーティング密度の3つの観点から非機能パッドの問題を検討します。一部の設計では、これらの問題は互いに排他的であるため、以下に挙げる設計上の課題のうち、製品にとって最も重要なものを決定する必要があります。 非機能パッドを用いた設計の信頼性 テレグラフィングとECM故障 スルーホールビアに非機能パッドが存在すると、「テレグラフィング」と呼ばれる状態を引き起こす可能性があります。ビアに銅が多すぎると、パッド間の材料が樹脂不足になります。その結果、銅スタックのイメージが、誘電体の表面層にピークとバレーとして現れます。言い換えると、銅スタックのイメージが基板表面に「テレグラフされる」のです。 最近のポッドキャストのゲストが説明したように、高い箇所はエポキシが「押し出される」地域を作り出し、これによりパッドとビアバレルが直角を形成する隣接するパッド間に空隙が残り、 熱的な故障を引き起こす可能性があります。 空隙の形成は、もう一つの信頼性の問題、すなわち電気化学的移動(ECM)故障を引き起こします。ビアジョイントでの空隙形成は接着問題を引き起こし、ECMパスを許容します。これにより、パッド間のわずかな電圧差により、パッド間に樹状または繊維状の構造物が成長する原因となります。これらの構造物の成長は時間とともに蓄積し、最終的には診断が困難なPCBの故障につながります。 樹枝状構造が隣接する導体間の隙間を埋めることができれば、短絡が発生します。樹枝状構造の断面積が小さい場合、電流密度が高くなり、構造が焼損して、事実上故障が除去される可能性があります。これにより、診断が困難な間欠的な故障動作が引き起こされます。 これらの材料におけるECMに関する良いレビューはこちらで見つかります: Yi, Pan, et al. "薄い電解質層の下での銅張り積層板と無電解ニッケル/浸金印刷回路基板の電気化学的移動挙動。" Materials 10, no. 2 (2017)
記事を読む
Altium Designer 22.7の最新機能のアップグレード
2 min
Newsletters
2022年8月26日 OnTrack隔週号 Altium Designerに関する 今月のニュース Altium Designer 22.7では、設計に役立つ新たな回路図、およびレイアウトの機能があります。今回の最新のお知らせでは、バリアント、PCBエディター、回路図エディターに含まれている3つの生産性機能を中心に紹介します。 バリアントでのPaste Maskの対応 - PCBバリアントでpaste mask開口の変更が必要となる場合があります。リリース バリアントでこれを指定するためのコントロールが、Altium Designerに搭載されました。 レイヤー間の配線長チューニング オブジェクトの移動 - 配線長チューニング部の再描画が必要なくなり、別のレイヤーに移動可能になりました。 シミュレーション
記事を読む
高速PCB設計解析: シミュレーションとシグナルインテグリティ解析
1 min
Blog
夏の終わりが近づくと、私は家族を集め、魔法をかけられたようなワクワク感を求めてステートフェアに向かいます。フェアが開催される場所は、普段は人けがなく、荒れ果てた風景の中、小さなほこりのかたまりが風に吹き飛ばされていきます。ところがフェアが始まると、そこは活気に満ちあふれます。ゾウの耳がついたブース、動物や実演を見せる建物、大声で叫ぶ子供たちを乗せた娯楽用の乗り物などが並びます。それは、全ての部分が動く、ジャグリングのような曲芸的状況です。 高速信号に対応したPCBの組み立てには、設計、コンポーネント、高速信号を扱うジャグリングのような部分があります。これらの高速信号には、不要な伝送線路が回路基板に大混乱を引き起こす可能性があります。混乱の多くはPCBレイアウト自体で発生します。 レイアウトのどの部分がこのような混乱をもたらすかを把握しておくと、基板をレイアウトしながら問題を解決できます。適用したレイアウト手法がシグナルインテグリティにとって最適かどうかは、膨大な量の計算が必要な手間のかかる解析を行うか、シグナルインテグリティシミュレーションツールを使用することで明らかにできます。この記事をお読みいただいた後、ご自分の基板にとってどちらがより効果的かを判断してください。 不十分なシグナルインテグリティシミュレーションツール シグナルインテグリティシミュレーションツールが不十分だと、魔法はカオスと化します。インピーダンス計算機能は誤った計算結果を返します。計算は、レイヤのスタックアップやPCBデザインルールで定義された材料の誘電率と矛盾します。シミュレータはモデリングのリターンパスを前提とするので、GNDプレーンに不連続な部分があると、計算から除外されます。3Dフィールドソルバーは、完全に誤った差動ペアのインピーダンスを算出して返します。 ツールは単純で、デザインルールを考慮したPCBレイアウトのお決まりのオプションに対応していません。このツールには、リジッドフレキシブルのルールとシミュレーションが含まれています。そのシミュレーション環境では、波形が生成されますが、わかりにくいものになっています。さらに詳しく調べるには、複雑なコマンドを手動で実行して、普通の状態の値を求める必要があります。これは、3Dフィールドソルバーでも同様です。電気的に長いトレースの解析で一般的な選択項目がユーザーインターフェースに含まれていないので、自信を持って 高速シグナルインテグリティの回路基板をレイアウトすることができません。 インテリジェントなEDAツールによる知力の上手な活用 結果を解釈する時間の浪費 明らかなエラーを解析するためにシミュレーションツールの結果を調べると、何時間もかかります。メニューを使った移動は、慎重な操作が必要です。インピーダンス計算機能をあれこれ操作して、トレースのインピーダンスの計算に誤ったパラメーターが使用されたことを明らかにしようとして、無駄な時間がかかります。シミュレーションに使用されたパラメータが、PCBレイアウトのルールセットと一致しないことを発見しようとして、時間を取られます。誰がそんなことを予想したでしょうか? 面状材料の固有の電気容量と誘電率の正しいパラメータがないと、算出されたインピーダンスが高速信号の反射や リンギングを本当に抑えるかどうかを確信できません。 シミュレーションは、ドリルファイルの不足など、周囲のちょっとした異常により失敗します。シミュレーションのセットアップにさまざまなPCBエディタと設定が必要であることを考えると、ドリルファイルの不足によって生じる失敗は、セットアッププロセスに混乱をもたらします。エディタおよび設定メニューに与えられる、選択したパラメータを何度も尋ねることになります。 シグナルインテグリティの高速信号をシミュレーションするツールを分析していると、ヘルプページやアプリケーションノートの検索でより多くの時間を無駄に使います。最終的に、シミュレーションの結果を示す波形ができあがっても、不要なデータが表示されることが多々あります。手元に強力なツールがあっても、自分の回路基板について適切にガイドしてくれる使いやすいユーザインターフェースがなければイライラが募ります。最終的に整合性がどうなるかはわかりません。 整合性の問題を特定して解消する優れたツール PCBデザインルールで設定されている材料パラメータを、ツールのインピーダンス計算機能で使用できたら、すばらしいと思いませんか? インピーダンスを計算するため、デザインルール全体にツールポート情報が格納されていれば、回路設計に基づいて正しいコンポーネントとレイアウトが実装されたプリント回路基板が、製造業者から戻ってくることを確信できます。 シミュレーションに PCBのデザインルールのパラメータを使用すると、信頼できる結果になります。波形を表示して、回路設計とPCBレイアウトの両方のシミュレーション結果を示すことで、技術者とレイアウト設計者がシグナルインテグリティの問題と解決に対応しながら設計を作り込んでいくことができます。これにより、解析を実行し、手作業で得たベストプラクティスを適用し、PCBの製造を待ってシグナルインテグリティを検証するという推測に基づく作業がなくなります。 Altium
記事を読む
高周波PCB設計のための銅箔の選び方
1 min
Blog
高周波PCBスタックアップに適した銅箔の選び方を学びましょう。これらの考え方は、高速PCBの銅の選択にも適用されます。
記事を読む
Pagination
First page
« First
Previous page
‹‹
ページ
48
現在のページ
49
ページ
50
ページ
51
ページ
52
ページ
53
Next page
››
Last page
Last »