PCB設計

業界をリードする専門家によるPCB設計の最新情報をご覧ください。

Filter
見つかりました
Sort by
役割
ソフトウェア
コンテンツタイプ
適用
フィルターをクリア
インポータを利用してリファレンスデザインをフル活用 インポータを利用してリファレンスデザインをフル活用 2 min Blog 多くの電子部品メーカーが、リファレンスデザインをCADデータで無償提供しています。しかし、これらが基板設計ツールのAltium Designerで作成されているとは限りません。通常、他機種データを利用する場合にはデータの変換にてこずりがちですが、Altium Designerでは内蔵されているインポータの助けにより、労せずこれらを利用する事ができます。 そこで、実際に部品メーカーのホームページにアクセスし、リファレンスデザインがどのような形式で提供されているかを確認し、それらがAltium Designerでどの程度利用できるのかを試してみました。 各社のホームページを覗いてみると、どの部品メーカーもリファレンスデザインの提供には力を入れています。どの部品メーカーを取り上げるべきか悩むところですが、今回は手始めに、Texas Instruments社(以下「TI社」)の製品情報ページを調査しました。 では実際にメーカーの情報ページにアクセスします。 Altium Designer形式のTIDA-00733 無作為に選んだ部品「TIDA-00733」をTI社のホームページから検索し、現れたページを調べました。これは、車載デジタルアンプ用のICです。 このページでは、BXL形式の部品ライブラリ、リファレンスPCBの回路図とPCBのCADデータ、及びGerberデータが提供されています。 まず、部品そのものについては、パッケージの種類ごとにBXL形式の部品ライブラリと3Dモデルが用意されており、Altium Designerですぐに利用する事ができます。 型番 パッケージ | ピン数 CAD ファイル( 記事を読む
クラウドコラボレーションで電子機器のライフサイクルを管理しましょう クラウドコラボレーションで電子機器のライフサイクルを管理しましょう 1 min Blog 電子製品のライフサイクルは、コンポーネントのライフサイクルに大きく依存しているという点で興味深いものです。この関係にもかかわらず、すべての電子製品のライフサイクルは他の製品と同様の軌道をたどります。新製品は初期採用から始まり、後に持続的な成長を経てピーク採用に達し、より優れた機能を持つ新製品が登場すると徐々に衰退します。この事実を受け入れると、各フェーズの電子製品ライフサイクルを利用して、設計とビジネス戦略を計画する方法を決定できます。 もしチームが新製品に取り組んでおり、製品のライフサイクルをコントロールしたい場合、2種類のライフサイクルの可視性が必要です:完全なサプライチェーン情報と製品ライフサイクル管理です。Altium DesignerをAltium 365プラットフォーム上で使用することで、チームは電子製品ライフサイクルの両側面を見ることができます。製品ライフサイクルのこれらの側面についてどのように考え、なぜチームがこの可視性を必要とするかをここで説明します。 電子製品ライフサイクルに何が影響を与えるのか? エレクトロニクスのライフサイクルは、いくつかの理由で短くなっています。エレクトロニクスにおいて、製品のライフサイクルは部分的にはその機能を実現するコンポーネントのライフサイクルに依存します。製品の寿命を通じて長いライフサイクルと再設計の回数を少なくすることを望む設計チームは、NRNDまたは廃止されたコンポーネントの原因を理解しています。これはビジネス上の問題でもあります:製品がコンポーネントの廃止とは無関係な理由で突然廃止されることがあります。 急速な技術開発と消費者の注意が短くなるこれらの日々において、任意の製品のエレクトロニクスのライフサイクルを予測することは難しくなります。ここでは、電子製品のライフサイクルに影響を与える要因のいくつかを紹介します: 消費者の需要。これはビジネス上の問題であると同時に設計上の問題でもあります。消費者の好みは時間とともに変化します。 競合製品のリリース。競合が市場シェアを脅かす製品をリリースすると、あなたの設計は適応する必要があります。これはハードウェアレベルでの変更を強いるかもしれず、再設計を引き起こす可能性があります。 コンポーネントの廃止。製品のコンポーネントがNRND廃止された場合、製品を大規模に生産し続けるためには製品を更新する必要があります。または、完全に新しい製品に置き換えるべきです。 新しいコンポーネントはより多くの機能を提供します。この点と前述の陳腐化に関する点は相互に排他的ではありません。しかし、コアコンポーネントの新しいバージョンが利用可能になると、設計中の現行コンポーネントが陳腐化するリスクが高まります。新しいバージョンが利用可能であれば、コンポーネントがNRND(新規設計非推奨)になる可能性がありますが、完全に廃止される前に生産が続けられることもあります。 下の画像では、進行中のプロジェクトの最近のリビジョンに対してActiveBOMドキュメントを開きました。設計プロセスの早い段階でサプライチェーンを確認しなかったため、在庫切れのコンポーネントやいくつかの陳腐化したコンポーネントを交換する必要がありました。デザイナーは、すでにシンボルとフットプリントを持っていた信頼できるコンポーネントに固執しました。幸いにも、これらの陳腐化したコンポーネント(下のショットキーダイオードを参照)はすべて標準的なパッケージングを持っていたので、再設計は迅速に進みました。もっと悪い状況になり得ました;中心的なSoCが陳腐化していた場合、私たちは(ボードとファームウェアのレベルで)大幅な再設計に直面していたでしょう。 このデバイスの長期ライフサイクルは短く、NRNDおよび陳腐化したコンポーネントが含まれています。製品を繰り返しリリースする場合、設計チームはその寿命を延ばすために代替コンポーネントを選択する必要があります。 この製品の再設計はどの程度広範囲にわたる必要がありますか?これはオープンな質問です。標準パッケージの受動部品のような単純なコンポーネントの場合、再設計はそれほど広範囲には及びません。熟練した設計者であれば、これらを比較的迅速に実装できます。SMD受動部品は標準パッケージで提供される傾向があるため、回路図とPCBレイアウトで代替コンポーネントを簡単に交換することができます。ICやSoCの場合、デバイスにコンパイルする任意のコードの前方互換性をコンポーネントメーカーに依存しなければならないため、巨大なリスクを負うことになります。コンポーネントがもはや調達できなくなるまで待つのではなく、適切な代替品に今すぐ交換する方が良いでしょう。 特殊なIC、特殊なSoC、センサー、またはその他のコンポーネントを備えた組み込みシステムの場合、必要とされる再設計はより広範囲に及び、製品のファームウェアにまで及ぶことがあります。標準的なIP(例えば、Arm Cortexコアで動作するMCU)を使用するよく知られたベンダーを選択している場合、ファームウェア開発に必要なライブラリは小さな変更で済むため、再設計や開発作業の範囲が縮小されます。 クラウドで電子機器のライフサイクルを管理する チームの全員が早期にコンポーネントのライフサイクル情報にアクセスでき、設計のライフサイクルステータスを追跡できるようにすることで、リデザインを予測する管理プロセスを作成できます。これは、適切なクラウド協業ツールを使用して、設計データをチーム全員と共有することにかかっています。 チーム全員が製品およびコンポーネントのライフサイクルの可視性を必要とする場合は、Altium 365上のAltium 記事を読む
BXL形式のライブラリを利用する BXL形式のライブラリを利用する 1 min Blog 基板設計CADのAltium Designerではファイルベースとクラウドベースのライブラリが提供されており、膨大な数の回路図シンボルやフットプリントを利用できます。しかし、市場に出回っている全ての部品が網羅されている訳では無く、足りない部品は設計者自身が用意しなくてはなりません。 ライブラリエディタを使えばどのような特殊なものでも作れますが、できれば既存のライブラリを利用して作成の手間を省きたいものです。そこで役立つのが、部品メーカーによるライブラリのサポートです。 多くの部品メーカーでは設計者に対するサポートの一環として、CAD用の部品ライブラリを提供しており、各社のホームページからダウンロードする事ができます。そこで、主要なメーカーのサイトをいくつかあたってみるとそれらは、「BXL」という拡張子を持つファイルで提供されています。 しかし、Altium DesignerではこのBXL形式のファイルを直接、読み込むことはできず、何らかの方法で変換しなくてはなりません。 BXLファイルとUltra Librarian 調べてみると、このBXL形式のファイルはEMA Design Automation社の「Ultra Librarian Viewer」というライブラリビューワで使われているものであることがわかりました。Ultra Librarian Viewerでは、このBXLファイルを読み込み、その内容を表示させるだけでなくAltium Designerを含む各社のライブラリフォーマットで保存できます。要するに、部品メーカーからBXL形式で提供されている部品ライブラリを読み込み、Altium Designerの部品ライブラリに変換する事ができるわけです。 ちなみに、Ultra Librarianのホームページによると、ルネサス、MICROCHIP、ANALOG DEVICES、マキシム、Power 記事を読む
シルクからソルダーマスクまでのクリアランス:追加する必要があるPCB設計ルール シルクからはんだマスクまでのクリアランス:追加する必要があるPCB設計ルール 1 min Blog Altium 20を使い始めたとき、箱から出したそのままで、標準的なプリント基板(PCB)を作る方法に関してほぼ全てをカバーしているデフォルトの設計ルールチェック(DRC)に感銘を受けました。Altium Designerはデフォルトで「10ミル」ルールに設定されており、これは銅のトラックの標準的な間隔や幅が10ミルであることを意味します。さらに、他のほとんどの間隔もデフォルトで10ミルに設定されています。これにはトラック同士、パッドとトラック、スルーホールと他のパッドやビアとの間隔など、想像できるほぼ全てのものが含まれます。例外は、シルクとはんだマスクのクリアランスと、パッド周りのはんだマスクの拡張クリアランスで、どちらもデフォルトで4ミルに設定されています。 新しい設計を始めるということは、回路基板にとって重要なPCB設計ルールを選択することを意味します。このルールセットはPCB製造会社によってサポートされ、エンジニアが機能的な回路基板を設計するのを助けます。デフォルトの10ミルルールには例外が存在し、特に密度や複雑さが増すと、全く異なる設計ルールのセットが存在することがあります。例えば、ボールグリッドアレイ(BGA)フットプリントを持つ集積回路(IC)の下の領域などがそうです。 密度が増加するにつれて、または信号エッジレートが増加するにつれて、これらのルールが他の単位や複雑さのレベルでリストされることは珍しくありません。 PCB設計ルールは製造能力に合わせるべきです 私はよく「6ミルルール」で設計することを好みます。なぜなら、オンライン注文手続きを使用してPCB製造業者を通じて素早く小さな設計を行うからです。新しいPCBの設定をする際には、使用したいPCB製造の範囲と PCB製造予算の見積もりを決定します。 ルールセットと製造業者のタイプが決まったら、製造能力を調べてAltium Designerが理解できるルールやポリシーに翻訳する必要があります。しばしば、そのベンダーの能力をほぼ一行ごと、統計ごとに表す一般的な「xミルルール」ルールセットに加えて、ベンダー固有のルールセットを作成します。 複雑さが増すにつれて、それに応じてルールセットを適応させ、それが表す製造上の妥協点を理解することが重要になります。製造プロセスを理解することは、これらの場合に役立ちます。例えば、ボードの中心部はドリルから銅への登録が最も良好で、ルールをより柔軟に適用できる場所かもしれません。別の見方をすると、ルールを曲げ、製造能力を押し上げる必要がある場合には、可能な限り成功の確率を統計的に高めることが最善です。 デフォルトの設計ルールや IPC基準で定義されている典型的な導体間クリアランスに加えて、組み立て欠陥を生じさせることなく密度を高める必要がある場合に考慮すべき他のクリアランスがあります。これらのクリアランスには、多くの設計者がデフォルト値をそのまま使用することが多い、はんだマスク(または「はんだレジスト」)とシルクスクリーンが関係します。代わりに、Altium Designerが不必要なエラーを引き起こさないように、カスタム値を設定してください。 はんだマスクスリバー もし非常に高密度の設計を行っていて、パッドのクリアランスが非常にタイトになり始めた場合、パッド間に残るはんだマスクのスリバーを単純に除去できるエリアを定義することが理にかなっています。コンポーネントのパッド周りにはんだ抵抗の拡張が定義されている場合、マスクの開口部が重なっていれば、パッド間に残るはんだマスクはすでに除去されます。これにより、信頼性のある製造が難しい小さすぎるはんだマスクのスリバーを自動的に除去できます。 このルールは、特定のパッドクラス、特定のネット、さらには特定のフットプリント間のはんだストップマスクのスリバーを管理する簡単な方法を提供します。例として、上の画像では、1206フットプリントとすべてのパッド間の最小はんだマスクスリバーに制約を設定しました。異なる層間、異なるパッドクラス間で個別のルールを適用することができます。 はんだマスクの拡張 ルールを曲げる別の例は、高密度のピンやパッドの周りのはんだマスクの拡張を減らし、ピン/パッド間に十分なはんだマスクが残るようにすることです。これにより、 はんだダムとして機能し、組み立て中のはんだブリッジを防ぐことができます。これは明らかにトレードオフであり、はんだ抵抗のミスレジストレーションの余地が少なくなり、はんだ付けの可能性やはんだブリッジの可能性に影響を与える可能性があります。 記事を読む