Skip to main content
Mobile menu
PCB設計
Altium Designer
世界中の設計者に支持される回路・基板設計ソフトウェア
CircuitStudio
エントリーレベルでプロ仕様のPCB設計ツール
CircuitMaker
個人、オープンソース、非営利団体のための無料PCB設計ツール
Altiumに乗り換える理由
他のPCB設計ツールからAltiumに乗り換える理由と方法を確認する
ソリューション
Altium Enterprise ソリューション
デジタルトランスフォメーションへの 最終ステップ
電子部品プラットフォーム
世界中の技術者が利用するOctopart
Altium 365
リソース&サポート
製品情報
無償評価版
ダウンロード
拡張機能
リソース&サポート
Renesas / Altium CEO Letter To Customers
全てのリソース
サポートセンター
マニュアル
Webセミナー
コミュニティ
フォーラム
バグの報告
アイディア
教育
専門家育成トレーニング 資格取得プログラム
Comprehensive Career Training for Altium Software and Design Tools
大学・高専
Academic Licenses, Training, Sponsorships and Certificates for Higher Education
オンラインストア
Search Open
Search
Search Close
サインイン
PCB配線
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
無料トライアル
クラス最高のインタラクティブ配線
どんなに複雑なプロジェクトでも手動による配線時間を短縮できます。
ソリューションを探す
PCB配線
Overview
All Content
ウェビナー
Filter
0 Selected
Tags by Type
0 Selected
全て
Software
0 Selected
全て
Clear
×
Clear
0 Selected
Tags by Type
全て
9
ビデオ
7
ウェビナー
1
ホワイトペーパー
1
0 Selected
Software
全て
12
Altium Designer
12
Non-Altium Products
1
最高のPCBアンテナ設計ソフトウェアでアンテナ実装が容易になる
回路基板アンテナの設計は、どのソフトウェアにとっても難しい作業になり得ますが、Altium Designerなら問題になることはありません。これは、あなたのBLEアンテナ設計ソフトウェアとして、そしてそれ以上のことにも対応できるソフトウェアです。 ALTIUM DESIGNER アンテナ設計が問題なく配置されるようにする 消費者と産業の需要が、より小型の無線デバイスの需要を促しています。これらのデバイスは、ウェアラブル技術、Bluetooth Low Energy (BLE) アプリケーション、個人通信システム、インターネットオブシングス(IoT)アプリケーション、医療技術、自動車の先進運転支援システム、その他の革新的な技術をサポートしています。これらおよびその他のアプリケーションは、物理的なフットプリントとコストを削減しながら性能を維持するPCBアンテナを必要とします。さらに、PCBアンテナ設計は、典型的な2.4 GHz帯からミリ波帯の周波数に至るまでの周波数要件にも対応する必要があります。 PCBやチップアンテナ上に延びる三次元のワイヤーを使用する代わりに、PCBアンテナ設計ソフトウェアはプリント基板上に描かれたトレースで構成されています。アンテナの種類やスペースの制約に応じて、PCBアンテナ設計者が使用するトレースの種類には、直線トレース、反転F型トレース、蛇行トレース、円形トレース、またはウィグルがある曲線トレースが含まれます。PCBアンテナの二次元構造は、製造元が指定した仕様を満たすために、Altium Designerのような堅牢なアンテナ設計ソフトウェアを必要とします。 最高のPCBアンテナシミュレーションソフトウェアは、イノベーションをアプリケーションにマッチさせます 製造業者は、ケーブルやコネクタを含む既製のコンポーネントとしてPCBアンテナを提供する場合があります。利用可能なPCBアンテナオプション(例えば、BLEアンテナ設計、IoTアンテナなど)が豊富にあるため、チームはシステム設計に追加したり、電気的および機械的要件に応じてアンテナをカスタマイズすることができます。PCBアンテナの設計は、基本的なマイクロストリップパッチから、マイクロストリップパッチ、ストリップライン、共面導波管(CPW)伝送線の組み合わせに至るまで様々です。一部の設計では、同じPCBアンテナ内で異なるタイプの伝送線を組み合わせることがあります。 PCBアンテナ設計ソフトウェアの選択は、アプリケーションに依存します。ワイヤレスマウスには、他のアプリケーションが必要とするRF範囲やデータレートと同じものは必要ありません。インターネットオブシングスに接続されたセンサーやデバイスは、より大きなRF範囲と高いデータレートを必要とします。新しいPCBアンテナ設計は、広帯域周波数範囲が必要なシステムアプリケーションや同じアンテナによって複数のアプリケーションが提供されることに対応するために、デュアルバンドおよび複数周波数バンドのカバレッジを特徴としています。 RF範囲の変動のために、同じ電力要件を持つ設計でも、異なるレイアウトを採用し、アンテナ設計のために異なる原則を適用することがあります。アプリケーションに関係なく、アンテナの設計とRFレイアウトが性能に最も大きな影響を与えます。さらに、PCBアンテナシミュレーションソフトウェアは、RFトレースのレイアウトガイドラインに従い、PCBスタックアップとグラウンディングのベストプラクティスに準拠し、電源供給のデカップリングを提供し、適切なRFパッシブコンポーネントで構成されている必要があります。設計と製品要件の違いが、PCBアンテナ設計ソフトウェアの必要性を確立します。 例として、高い利得を必要としない高周波アプリケーションでは、誘電体によって大きなグラウンドプレーンから分離された回路基板の片面に形成されたマイクロストリップパッチからなるモノポールPCBアンテナが使用されます。他のアプリケーションでは、特定の周波数でより高い利得を必要とし、多層構成を使用する場合があります。どちらの場合も、ターゲット動作周波数の波長はパッチのサイズと直接関係があります。 PCBアンテナ設計には基本的なアプローチが必要です PCBアンテナ設計は、主要な性能パラメータの設定から始まります。これらのパラメータには
Altium Designerによる円形や曲線状のPCB設計
現代の生活は、電子機器なくして成立しません。まるで、家にあるもの全てをPCBに配線する最初の人間になる競争をしているかのようです。デバイスの形状やサイズがきわめて多岐にわたってきており、円形のPCBがいっそう普及しています。円形のPCBで次のデバイスを設計したいとお考えなら、四角形のPCBを前提とした作業に制約されないCAD/レイアウト ツールを備えた設計ソフトウェアが必要です。 Altium Designerで作業すれば、PCBのフットプリント/レイアウトを全面的に制御できるようなり、あらゆる形状、サイズのPCBを構築できます。 Altium Designer 曲線状や円形のPCBに対応する、優れたレイアウト ツールを備えたPCB設計ソフトウェア パッケージ PCBがかつてないフォームファクターに対応し、いっそう高度な機能を必要としているため、設計方法もこのような変化に着いていかなければなりません。次の電子機器が円形のフォームファクターなら、円形のPCBを使用することで基板スペースが広がり、四角形の基板をいくつも使用するよりも望ましいといえます。特定のアプリケーションに応じて、多くの他のデザインルールや方法を実行する必要もあるでしょう。優れたCAD/レイアウト ツールを備えたPCB設計ソフトウェア パッケージを使用することで、次の円形のPCB設計がスムーズに行えます。 円形や曲線状の設計方法 PCBの形状が決まったら、CADツールで基板の形状を描画する必要があります。これが基板の基礎を形成するもので、設計者は次にコンポーネントの配置に進むことができます。高性能デバイスの場合は、高速/高周波機能を備える多層PCBを設計することになります。各レイヤーにGND/電源プレーンを定義する必要もあります。電源/GNDレイヤーの形状の定義には、設計ソフトウェアに組み込まれたポリゴンエディターが必要です。 特定のアプリケーションに対応する円形のPCB設計 特定のアプリケーションでは曲線状や円形のデバイスが求められ、それによってPCBの設計もデバイス パッケージのフォームファクターに合わせる必要があります。四角形の基板を曲線状のパッケージ内部に使用すると、利用できる基板スペースが縮小します。そのため、曲線状の設計にすることでパッケージの輪郭に合ったPCBを実現できます。これによって、いっそう設計の柔軟性が得られ、将来、新しい機能を組み込むために設計を拡大することもできるようになります。 特定の基板形状は、各アプリケーションに応じて優れたCADツールを必要とします。優れた設計ソフトウェアは、曲線状や円形のPCBの作成を実現します。 特定のアプリケーションに応じた基板形状のカスタマイズの詳細については、こちらをご覧ください。 曲線状や円形のPCBで電源/GNDプレーンを定義するには、ポリゴンエディターを備えた設計ソフトウェアが必要です。これによって、GND/電源プレーンのカスタマイズが可能になり、円形のPCBに適応することができます。
Thought Leadership
デカップリングコンデンサとバイパス配置ガイドライン
電力整合性の問題は通常、電源の観点から見られますが、ICからの出力を見ることも同じくらい重要です。デカップリングおよびバイパスコンデンサは、PDN上で見られる電力変動を補償することを目的としており、信号レベルが一貫しており、ICの電源/グラウンドピンで一定の電圧が見られることを保証します。次のPCBでこれらのコンポーネントを成功裏に使用するための重要なバイパスおよびデカップリングコンデンサ設計ガイドラインをいくつかまとめました。このブログでは、バイパスコンデンサとデカップリングコンデンサの違いについて取り上げます。 2つの関連する電力整合性の問題 デカップリングキャパシタとバイパスキャパシタは、異なる2つの電力整合性問題を解決するために使用されます。これらの電力整合性問題は関連していますが、異なる方法で現れます。最初に指摘すべき点は、「デカップリングキャパシタ」と「バイパスキャパシタ」という用語が電力整合性に使用される場合、それらは誤称であり、何もデカップルまたはバイパスしません。また、ノイズを地面に渡すわけでもありません。単に時間をかけて充電および放電し、ノイズの変動に対応します。これらの用語は、電力整合性戦略の一部としてこれらのキャパシタの機能を指します。 まず、デカップリングコンデンサを考慮しましょう。PCBデカップリングコンデンサの配置の目的は、低周波の電源ノイズ、 PDN上のリンギング、およびPDN上のその他の電圧変動に対して、電源レール/プレーンとグラウンドプレーン間の電圧が一定に保たれるようにすることと一般に言われています。電源とグラウンドプレーンの間に配置されたデカップリングコンデンサは、プレーンと並列になり、これにより全体のPDN容量が増加します。実際には、 インタープレーン容量が不足していることを補い、PDNインピーダンスを減少させるため、PDN電圧のリンギングが最小限に抑えられます。 バイパスコンデンサについて考えてみましょう。これらもPDNと駆動IC内で一定の電圧を維持することを目的としていますが、補償する電圧は出力ピンとPCBのグラウンドプレーンの間の電圧です。電源供給ピンとICのグラウンド接続の間に配置されていますが、異なる機能を果たします。それは、キャパシタからグラウンドへのバウンスを抑制することです。デジタルICがスイッチすると、ボンドワイヤー、パッケージ、ピンの寄生インダクタンスが原因で、ドライバーの出力とグラウンドの間の電圧が増加します。バイパスコンデンサは、グラウンドバウンス電圧とは反対の電圧を出力し、理想的には総電圧変動がゼロになるようにします。 上記のモデルでは、バイパスコンデンサ(CB)とICパッケージ/グラウンド接続上の漂遊インダクタンスL1を含む閉ループがあります。出力ピンとグラウンドプレーンの間で測定される グラウンドバウンス電圧 V(GB)に注目してください。残りのインダクタンスはすべて寄生成分であり、バイパスコンデンサの応答時間に影響を与え、グラウンドバウンスを補償します。理想的なモデルでは、バイパスコンデンサによって見られる電圧は、スイッチング中に漂遊インダクタンスL1によって生成されるグラウンドバウンス電圧を補償します。 バイパスコンデンサの配置ガイドライン キャパシタからグラウンドへのバウンスが発生する仕組みを見れば、 バイパスキャパシタをどこに配置するかは明らかでしょう。上記の回路モデルにおける寄生インダクタンスのため、バイパスキャパシタは電源ピンとグラウンドピンにできるだけ近く配置する必要があります。これは、多くのアプリケーションノートやコンポーネントのデータシートで見つかるアドバイスと一致しています。 寄生インダクタンスに関連するもう一つの考慮事項は、ICへの接続がどのようにルーティングされるかです。キャパシタからICピンへ短いトレースをルーティングするのではなく、キャパシタをビアを通じて直接グラウンドプレーンと電源プレーンに接続するべきです。 パッドとトレースの間隔要件をこの配置で守ることを確認してください。 なぜこのような配置が必要なのでしょうか?その理由は、グラウンド/パワープレーンの配置(プレーンが隣接する層にある限り)は非常に低い寄生インダクタンスを持つからです。実際、これはボード内で最も低い寄生インダクタンスの源です。ボードの裏側にバイパスコンデンサを配置できる場合、より良い配置を実現できるかもしれません。 デカップリングコンデンサの設計ガイドライン PDNで必要な PCBデカップリングキャパシタのサイズを決定した後、入力電圧の変動を補償できるように、どこかに配置する必要があります。実際には、複数を使用するのが最善で、並列に配置され、並列配置により有効な直列インダクタンスが低くなります。 古いガイドラインでは、基板上のどこにでも配置できるとされていました。しかし、これには注意が必要です。なぜなら、デカップリングキャパシタとターゲットICの間の寄生インダクタンスが増加し、PDNのインピーダンスとEMIへの感受性が高まる可能性があるからです。代わりに、エッジレートが速いICの場合、ターゲットICに近づけて配置するべきです。下の画像は、ICの近くに配置された典型的なバイパスおよびデカップリングキャパシタの配置を示しています。これは、キャパシタとICの間の寄生インダクタンスが非常に低いため、高速回路にとって最適な配置の一つです。
PCB設計における差動ペアの間隔とクロストーク
差動信号によるクロストークが信号に問題を引き起こしていますか?ここでは、差動信号がどのようにクロストークを発生させるか、そしてどのようにして差動信号の整合性を保証できるかについて説明します。
PCBトレースのインダクタンス計算:どれくらい広いのが過ぎるのか?
トレースを正しくサイズ設定し、PCBトレースのインダクタンスが十分に低いことを確認する方法は次のとおりです。
優れた設計のために、優れた回路作成ソフトウェアをAltiumからダウンロードしてください
複数の異なるシステムの設計ツールを使用して作業を行う悩みを解決するには、Altium Designerが不可欠です。この回路作成ソフトウェアは、必要なツールを全て単一のシステムに備えています。 Altium Designer 強力で最新の使いやすい専門家向きのPCB設計ツールです。 PCBの設計を複数の異なる設計ツールで行うと、大きな問題につながる可能性があります。ライブラリがツール間で同期していない、あるいはネットワークの接続が失われている、またツールから次のツールへ移行する際に誤解が生じているなどのおそれがあり、なにより全員が他のツールの再学習の継続を強いられます。優れた回路作成ソフトウェアは、この問題を回避できます。PCBを設計するために必要な全てのツールが同一システム内にそろっているからです。この方法によって、データが集中化され、プラットフォーム全体を通じて利用可能になります。別のシステムに送ることなく、設計を全ての側面から検証でき、さらに同一の共通のシステムインターフェースが、設計の最初から最後まで使用されます。優れた回路作成ソフトウェアは、これらを全て行い、さらにそれ以上のことを行えます。それが、Altium Designerです。 設計資産を一元管理する回路設計ソフトウェア データ収集のために設計プロセスを何回止める必要があるかによって、PCB設計に深刻な遅れが生じ、さらには計画が頓挫することもあり得ます。使用するコンポーネントを探したり、設計変更を追跡したり、あるツール環境から別の環境へと移動するために時間を使ったり、いずれにしてもこのような作業は、貴重な時間とコストを費やす結果になりかねません。ベストを求めるなら、なすべきことを実現してくれる優れた回路作成ソフトウェアが必要です。 Altium Designerは、ActiveBOMと呼ばれる部品表管理機能が組み込まれており、これによって、部品ベンダーにクラウド接続して設計で使用しているコンポーネントの状況を把握したり、更新したりすることができます。また、Altium Designerは、設計変更を追跡して、進捗を維持する機能も組み込まれています。 変更追跡の最も便利な部分は、Altium Designerの異なるツールのそれぞれが、統合データモデルに基づいていることです。すなわち、容易にツール間の移行を行えるように意図されています。異なるシステムや部門に散らばったデータやツールによって時間を浪費しないために、Altium Designerがどのように役立つかをご覧ください。 統合設計環境、Altium Designerの回路作成チュートリアル ツールが混在する環境で、異なるシステムを学習し続ける時間はありません。Altium Designerの統合設計環境には、必要なものがすべて、同一システム内にそろっています。 リアルタイムな部品情報に自分の設計ツールでアクセスできるのに、世界各地からのコンポーネント情報を待つ必要はありません。
Pagination
First page
« First
Previous page
‹‹
ページ
17
現在のページ
18
ページ
19
ページ
20
ページ
21
ページ
22
Next page
››
Last page
Last »
💬
🙌
Need Help?
×
🛟
Support Center
📣
Ask Community
📞
Contact Us