クラス最高のインタラクティブ配線

どんなに複雑なプロジェクトでも手動による配線時間を短縮できます。

Filter
0 Selected Content Type 0 Selected 全て Software 0 Selected 全て Clear ×
Clear
0 Selected Content Type
0 Selected Software
PCBの種類 PCB設計を開始すると、アプリケーションごとに専用の異なる設計要件があることに気づくでしょう。ワークフローの生産性を損なうことなく、全ての設計要件を満たすには、どのような設計要件にも適応するPCB設計ソフトウェアが必要です。統合設計インターフェースを備えたPCB設計ソフトウェアを使用すれば、アプリケーション固有の設計要件を定義し、満たすことも簡単です。 Altium Designer あらゆるアプリケーションに合わせて固有のPCBを設計できるPCB設計ソフトウェアパッケージ。 完全に電気を使わない生活をしている人以外は、常に多数のPCBに囲まれていると言っても過言ではありません。これらのPCBは、どれも固有のアプリケーションに合わせてカスタマイズされており、デバイス間で交換できるPCBは1つとしてありません。PCB設計には、暗黙的にカスタマイズ性が求められるため、設計者と技術者には、あらゆるアプリケーションに対応するPCBを構築できる設計ソフトウェアが必要です。 PCBにはさまざまな種類がありますが、最新の設計プロセスで使用されるPCBには、リジッドPCB、フレキシブルPCB、リジッドフレキシブルPCBなどがあります。しかし、使用するPCBの種類についてはさらに多数の考慮事項があり、プリント回路にはどのような銅箔要件があるのか、それによって半田、およびソルダーマスク要件はどうなるのか、表面実装コンポーネントやスルーホール技術は使用されるのかなどを検討する必要があります。 片面PCBでも、細かい調整や正確な計算を必要とする制約や寸法線が十分にありますが、多層、またはマルチボードのシステムではどうなるのでしょうか。PCBの種類は、技術者が考慮に入れる技術的な性能や要件に合わせて適応し続けていますが、お使いの設計ソフトウェアはこの変化に追いついていますか。 あらゆるアプリケーションに対応するPCB設計 全てのPCBが同じように作成されるわけではなく、ほとんどのアプリケーションには独自に設定された機能要件があります。同様に、全てのPCB設計ソフトウェアパッケージが任意のアプリケーション向けの設計に合わせて即座にカスタマイズできるわけでもありません。シングルレイヤーなどのより単純なPCBや低速デバイスの場合、必要なデザインルール数とコンポーネント数はその他のデバイスよりも比較的少なくなります。どのようなアプリケーションであっても、PCB設計ソフトウェアで設計仕様をカスタマイズできる必要があります。 全ての要件は、デザインルールを使用して実現されます。多くのPCB設計ソフトウェアパッケージには、業界標準のデザインルールが含まれており、これを使用することで大幅に設計時間を節約できます。これに加えて、どのデザインルールがアプリケーションに適しているかを設計者が選択し、独自のデザインルールを指定できるような設計ソフトウェアが望ましいでしょう。また、設計の検証時には、ソフトウェアによってこれらのルールを基準にレイアウトがチェックされ、簡単にエラーを修正できる必要があります。 PCBアプリケーションに合わせた設計ソフトウェアのカスタマイズ 特定のアプリケーションに合わせた構築には、設計環境のパラメーターを定義できる設計ソフトウェアが必要です。これには、カスタマイズしたデザインルールの定義、カスタマイズしたコンポーネントの構築、レイヤースタックアップの指定、電源とGNDの配列が含まれます。これら全ての側面によって特定のアプリケーションに合わせた設計の基盤が築かれます。 PCB設計ソフトウェアには、デザインルール チェックとカスタマイズ機能が含まれている必要があります。これにより、特定のアプリケーションが持つ要件を満たす設計を実現しやすくなります。 デザインルールの設定、およびチェックの詳細については、こちらをご覧ください。 特別なPCBアプリケーションでは、特殊な機能を備えたカスタマイズコンポーネントの作成が必要になる場合が少なくありません。 カスタマイズ コンポーネントの作成の詳細については、こちらをご覧ください。 設計ソフトウェアには、ボードシェープからレイヤースタックアップ、および材質オプションまで、あらゆる基板配置に必要な全てのオプションが含まれている必要があります。 基板のカスタマイズの詳細については、こちらをご覧ください。
PCB制作者はAltium Designer以上を探す必要はありません PCB制作者はAltium Designer以上を探す必要はありません PCB設計ソフトウェアに関して言えば、最高のソフトウェアパッケージは部分的に販売されることはありません。PCB設計業界が求める最新かつ最高のツールを含む統合ソフトウェアソリューションが必要です。PCB設計が初めてであろうと、何十年ものビジネスに携わっているとしても、Altium Designerはあらゆる用途の高品質なPCBを生産するためのツールを提供します。 ALTIUM DESIGNER 設計プロセス全体に必要なツールを含む統合PCB設計ソフトウェアパッケージ シンプルな回路基板を作成できるプログラムはたくさんあります。しかし、最高のPCBを構築したい場合、最高のツールが必要です。今では、Altium Designerで統一されたPCB設計環境で作業できます。機能が分離されたプログラム間で設計を移動させる日々は過ぎ去りました。 Altium Designerを使用すると、必要な重要な機能をすべて含む単一のインターフェース内で操作できます。業界標準の設計、シミュレーション、CAD/CAM、およびドキュメント機能は、Altium Designerの64ビットマルチスレッディングアーキテクチャによって提供されます。完成した製品を生産し始めるために必要なすべてが単一のソフトウェアパッケージ内に存在します。 強力なインターフェースを活用して回路基板を作成する 新しいソフトウェアパッケージに慣れるまでには時間がかかることがあります。設計ツールが複数のプログラムに分かれている場合、状況はさらに悪化します。設計ツールが単一のソフトウェアパッケージに統合されている場合、ソフトウェアの細かな点を学ぶのに必要な時間は短縮されます。回路は、設計エンジニアが自由と創造性を持って作業できるよう促すPCBソフトウェアを要求します。 PCBクリエーターは、回路図のキャプチャからレイアウトへの移行を容易にし、PCBメーカー用の出力ファイルを慎重に管理できるソフトウェアを求めます。すべてを一つのプログラムで一貫したファイル形式で保持することで、複数のプログラム間での変換によるエラーを排除します。真の回路基板クリエーターがこれまでになく簡単になりました。 統合された設計インターフェースでPCBをレイアウト 強力なルーティングツールで、設計が目の前でまとまっていくのを見守りましょう。ルーティング機能を広範なコンポーネントライブラリとCAD/CAMツールと組み合わせることで、回路図からレイアウトへの移行に必要なものがすべて揃います。直感的な設計インターフェースが、簡単に始めることを可能にし、成功を手の届くところに置きます。 Altium Designerの設計インターフェースを使えば、回路図の設計とコンポーネントのレイアウトを始めるのが簡単です。 Altium Designerの統合設計インターフェースについてもっと学びましょう。 Altium
DDR3 ルーティングガイドラインとルーティングトポロジ DDR3 ルーティングガイドラインとルーティングトポロジ 揮発性メモリがなければ、コンピュータはハードドライブやフラッシュのような非揮発性メモリへの常時読み書きが必要になります。非揮発性メモリは、現代のコンピュータを非常に強力にし、高度なタスクに必要な適応性を与える要素の一つです。DDR3は現在時代遅れになりましたが、DDRベースのメモリはこれからも現代のコンピュータアーキテクチャにおいて中心的な役割を果たし続けるでしょう。適切な設計ツールを使用すれば、最新世代のDDRベースのメモリやそれ以降の設計が可能です。 Altium Designerで何ができるか見てみましょう。 高性能PCBとメモリアーキテクチャにおける業界標準のエレクトロニクス設計。 ダブルデータレートスリー(DDR3)は、DDRの以前の世代を継承する動的ランダムアクセスメモリ(DRAM)の一種です。これらのメモリは1066 MHzに達するクロックスピードを持ち、最大24 GBのメモリをサポートします。この高いクロックスピードと大容量のストレージは、DDR3が現代のコンピューティングにおいて主流であり続けることを保証しましたが、最終的にはDDR4に改善されました。新しい世代はデータレートとクロックスピードの限界を常に押し上げており、DDRベースのメモリが近い将来新しいアーキテクチャに置き換えられることはほとんどないでしょう。 このことを念頭に置いて、メモリ設計者はDDRベースのメモリに対する様々なPCB設計ルールを認識し、これらのルールがDDR4でどのように限界まで押し上げられているかを理解する必要があります。設計者は、新しいトポロジの実装がDDRベースのメモリの機能性を向上させたことを含め、PCBの異なるルーティングトポロジにも注意を払うべきです。 Altium Designerのような優れたPCB設計パッケージを使用することで、設計エンジニアはDDR3、DDR4、および将来のメモリ世代のパフォーマンスを向上させるための最適なルーティングトポロジを実装できます。Altium Designerには、設計、インタラクティブルーティング、電力供給分析、およびシミュレーションツールが含まれており、DDRベースの設計が最高のパフォーマンスで動作することを保証するために必要なものがすべて揃っています。 DDR3ルーティングのためのルーティング設計ガイドラインとトポロジ DDR3は、差動クロック、アドレス、コマンド、および制御信号にフライバイトポロジを使用します。DDR3は元々、メモリバンクをコントローラーに接続するためにTトポロジを使用していましたが、高性能なDDR3メモリは、高容量負荷およびICアーキテクチャとの互換性を向上させるためにフライバイトポロジを使用します。 DDR3またはDDR4の適切なアーキテクチャを実装し、DDR SDRAMダイパッケージとのインターコネクトを配置するには、トポロジを制約しない適応可能なルーティングツールが必要です。信号トレースは差動ペアとしてルーティングされ、PCIeのような他のコンピュータ周辺標準と比較して厳密な許容誤差内で正確に一致させる必要があります。 DDR3およびDDR4ルーティングにおけるシグナルインテグリティ 他のデバイスでシグナルインテグリティを確保するための標準的な設計ルールの多くは、DDR3以降にも適用されます。高性能メモリはフライバイトポロジーを使用しており、これには特定の要件があります。トレースは厳密な許容誤差内で長さを一致させる必要があり、差動ペアは同一層上で密接に結合されるべきであり、各メモリデバイスへのスタブ長は、伝送線効果やスタブ内の共振を防ぐために可能な限り短くする必要があります。与えられたレーングループ内のすべての信号は、伝播遅延の差とスキューを防ぐために同じ層上でルーティングされるべきです。 ボード全体でのルーティングとレイアウトの有効性を検証するためには、設計データを直接組み込んだシミュレーションツールが必要です。反射波形とクロストークを計算するシグナルインテグリティツール内で作業することで、DDR3およびそれ以降のメモリに関する重要な性能基準を満たす設計を確実に行うことができます。 すべてのトポロジーが直感的なわけではありませんが、PCB設計ソフトウェアのルーティングツールは、必要なDDR3ルーティングトポロジーを簡単に実装できるようにするべきです。 PCB設計ソフトウェアでDDR3トポロジーを実装する方法についてもっと学びましょう。
はんだマスクとPCB設計のためのはんだプロセス 優れたソフトウェアでブルーのPCBやその他の色の回路基板を設計する 青いPCBであろうと他の色であろうと、仕事を成し遂げるために必要なPCB設計ツールの選択肢はAltium Designerです。 ALTIUM DESIGNER はんだマスクのニーズに対応するために、Altium Designerを頼りにしてください 回路基板の色は、製造時に使用されるはんだマスクの色によって決まります。選択できる色はたくさんあります。従来の緑、赤、さらに青も使用可能な色の一部です。一部の人にとって、回路基板の色には特定の意味があるかもしれません。赤はプロトタイプボードを示すことがあり、他の人はLCDに対して取り付けるために青いボードを好むかもしれません。青いPCBの別の目的は、シルクスクリーンのラベリングにより大きなコントラストを提供することです。 はんだマスクの色が何であれ、はんだマスクレイヤーを最も制御できる多機能なPCB設計CADシステムが必要になります。異なる製造業者や製造方法に合わせてはんだマスクを調整できる必要があります。手動でのはんだマスク編集機能やバッチ編集機能も必要です。回路基板を組み立てプロセスを成功させるためには、設計を制御できるPCB設計ツールが必要です。Altium Designerが必要です。 青いPCBやその他の色のはんだマスクについての詳細 はんだマスクは、それが覆うプリント基板の領域にはんだが適用されるのを防ぎます。また、酸化を引き起こす可能性のある露出から金属を保護し、短絡すべきでない金属間にはんだが小さな橋を形成するのを防ぎます。使用できるはんだマスクの色だけでなく、マスク材料の種類も異なります。 異なるはんだマスクの色は、組み立てプロセスを通じて、回路基板が設計されている業界の要件を満たすことを目的とした異なるはんだマスク材料を意味します。また、基板のはんだ付け方法にも違いがあり、はんだマスクの設計に影響を与える可能性があります。たとえば、波はんだはリフローはんだと比べて異なるサイズのパッド形状を必要とする場合があります。 PCB設計のためのはんだマスクとはんだプロセス 統合回路であれ、単純なPCB製造であれ、トレース、銅、部品やコンポーネントについての知識、そしてデータを送信した製造所についての知識が必要になります。はんだマスク材料とその用途についてより詳しく知ることで、より良いプリント回路基板を設計するのに役立ちます。 ここでは、異なるはんだマスク材料と用途に関する情報を提供し、設計に最も適したはんだマスクを選択するのに役立ちます。 PCBに適切なはんだマスクを選択する方法についてもっと学ぶ。 波はんだは、プリント回路基板製造のための標準的な実践です。ここでは、そのプロセスに関するさらなる情報があります。 PCB設計に波はんだが最適な選択肢である場合についてもっと学ぶ。 ウェーブはんだ付けよりも良い選択肢がある場合もあります。ウェーブはんだ付けをいつ行うべきか、または行わないべきかについての考慮事項はこちらです。 ウェーブはんだ付けの利点と欠点についてもっと学ぶ。
ビアの作成のための優れたツールセット ビアの作成のための優れたツールセット クラス最高のパッドとビアのライブラリやドリルペアマネージャーでは、あらゆる種類のビアを定義して保存できます。 Altium Designer 専門家を対象とする、効果的で使いやすい最新のPCB設計ツール。 PCBのレイヤーの接続に使用されるビアでは、途切れのない信号経路の確保が要求されます。最も一般的なビアはPCBのすべてのレイヤーを貫通する円筒状の穴ですが、これはスルーホールと呼ばれます。スルーホールのそれぞれの端にはパッドが含まれます。密度の高い基板でのスペースの節約とシグナルインテグリティーの確保という特殊な用途向けのビアもあります。 PCBでは通常、少なくとも1つの内層と片方または両方の外層を接続するためにビアが使用されます。ブラインドビアは1つの外層と1つ以上の内層を接続し、その終端は内層になります。ベリードビアは内層の信号を接続しますが、外層には到達しません。それぞれの内層のビアの交点で接続が確立され、連続した信号経路が確保されます。コストに応じてこの種類のビアを選択します。 PCBのビアの種類 最も一般的なビアはスルーホールビアで、すべてのPCBのうちの99%で使用されています。また、重要な信号に対処するために使用されるビアもあります。ここでは、シグナルインテグリティーを確保するために追加機能が必要になります。この用途で最も利用されているのはブラインドビアです。このビアは基板全体ではなく数レイヤーのみを貫通するので、誘導性が制限されます。そのため、内層の接続で外層からの遮蔽が必要な場合に使用されます。サーマルビアは、サーマルリリーフのパッドでパターンを使って、大量の電力を消費する機器から熱を逃がします。 ブラインドビアの開始レイヤーと終了レイヤーの指定 Altium Designerのパッドとビアのテンプレートを使ったカスタムのビアの作成 それぞれの種類のビアは、パッド/ビアテンプレートエディターで作成、定義して、設計のローカルパッド&ビアライブラリに保存できます。このインテリジェントなエディターでは、IPC寸法が認識され、カスタムで作成したビアに名称が割り当てられます。この名称には、それぞれのビアのIPCの定義が含まれます。これが、PCBベンダー機能に関連付けられ、カスタムパッドやビアをユーザーが入手できるようになります。Altium Designerには、ユーザーの要求を予測するエディターが備わっています。これにより、製造に関する適切な制約を維持しながら、カスタマイズされたビアを設計に使用することができます。 各ビアの特長に基づいてカスタムのビアを作成し、保存しておきましょう。 サーマルビアを使用すれば、デザイン全体で熱を逃がすことができます。 PCBにサーマルビアを追加する方法については、こちらのwebセミナーをご覧ください。 ブラインドビアとベリードビアを使用すると、PCBでスペースを節約してコストを削減できます。 ブラインドビアとベリードビアの詳細については、こちらをご覧ください。 マイクロビアでは、多層PCBで小さなトレースを配線したり、スペースを節約したりできます。 Altium
電源プレーンリターンパス Thought Leadership パワープレーンとグラウンドプレーン:PCBのパワープレーンをリターンパスとして使用すべきですか? 電源プレーン(電源層とも呼ばれる)とグラウンドプレーンは、電力供給の配布以上の重要性を持っています。インピーダンス制御ルーティングでの基準プレーンの定義や、リターンパスの管理においても、スタックアップはリターン電流がPCBの電源プレーンに入り、その後グラウンド層に再結合されるよう強制することがあります。インピーダンス制御トレース幅の基礎としてGND基準層を定義しても、設計内の電源層の長さに沿った明確なリターンパスを定義する必要があります。電源層をリターンパスとして使用するPCB内でのリターンパスを制御するための良い実践をいくつか見てみましょう。 PCBの電源プレーンをリターンパスとする場合の信号挙動 「リターンパス」と言うとき、設計内でリターン電流が自然に従うパスのことを指します。このパスにより、電流はPCBアセンブリの入力側の低電位端子に戻ることができます。伝送線上で移動する信号にとって、リターンパスは線とその基準プレーンの間の容量によって決まります。容量が大きい、周波数が高い、またはその両方である場合、リターン電流は変位電流として容易にグラウンド層に入ることができます。 これは、伝送線とその参照平面との距離が、その参照平面のタイプが何であれ、実際の設計においていくつかの重要な電気的振る舞いを決定することを意味します。そのような振る舞いには、 外部ソースからのEMI感受性があり、これは大きな電流ループを介して誘導的に、または電場を介して静電容量的に受信されることがあります 不一致のインピーダンスは、平面領域間、ギャップを越えて、またはインターコネクトに沿ってトレース幅が変化する場合に生じます 他のトレースからのクロストークは、設計が 伝播中の損失は、伝送線と近くの参照平面または他の導体の間の場の線の集中によって発生します 返り経路または信号参照を提供する隣接層としてパワープレーンまたはグラウンドプレーンのどちらを使用するか選択できる場合は、常にPCBグラウンドプレーンを選択するべきです。これには2つの理由があり、以下で詳しく説明します。 静電容量結合 電力プレーンがどのようにして(あるいはしないで)任意の種類のリターンパスとして機能するかを議論する前に、我々は次の質問をしなければなりません。伝送線から電力プレーンPCBへの電流はどのようにして入るのでしょうか。答えは、容量性結合です!上述のように、リターンパスは伝送線と近くの導体の間で誘導されることが記されています。近くのプレーン層については、線とプレーンの間に電気ポテンシャルが変化するたびにこれが発生します。したがって、プレーンの隣でトレースが配線され、デジタル信号がそのトレースを通過するとき、我々は今、プレーン層で変位電流が駆動されていることになります。 近くのプレーンが、電力入力時の低ポテンシャル点と同じポテンシャルのグラウンドプレーンであれば、全てがうまくいくでしょう。これの問題点は、電流が電力プレーンから近くのグラウンド層へと移動する必要があるとき、電流は別の誘電体層を通ってPCBグラウンドプレーンに到達する必要があるということです。 スタックアップの設計方法や信号が誘導される基板の領域によって、2つの層の間のキャパシタンスは、電源プレーンとグラウンドプレーンの間に非常に高いインピーダンスの経路を形成する可能性があります。スタックアップによっては、以下に示すような単純な4層スタックアップの場合、電源層とPCBグラウンドプレーン層の間のプレーンキャパシタンスは非常に小さく(平方ミリメートルあたりフェムトファラドのオーダー)、非常に高速なデジタル信号や非常に高周波のRF信号を除いて、極めて高いインピーダンスのリターンパスを作り出します。この電源プレーンとグラウンドプレーンの間の旅の中での唯一の他の選択肢は、以下に示すように、最も近いデカップリングキャパシタを通ることです。どちらの場合でも、基板のどこかでEMI問題が発生する可能性があります。 通常の低速シングルエンド信号(たとえば、立ち上がり時間が制限されたI2CやSPI信号など)の場合、このGNDへの結合から発生するEMIが最大の問題ではないかもしれません。これは、純粋なDCや低周波アナログデバイスではまったく発生しません。しかし、今日の標準CMOSコンポーネントでは、一般的なデジタルコンポーネントのシングルエンドバスでもこの問題が発生する可能性があります。では、解決策は何でしょうか? 解決策は、PCBスタックアップの再設計にあります。最も簡単な方法は、グラウンドリターンを提供するレイヤーを追加することです。一般的に、すべてのGNDプレーンが適切に間隔を置いてステッチングビアで繋がれている限り、他の設計変更は必要ありません。設計の観点からより時間がかかるものとして、上記の4層スタックアップのように、PWRとシグナルを同じレイヤーに配置し、その上にPWRをプアとして同じレイヤーに追加することが挙げられます。 4層例 上記の例の4層ボードでは、連続したビットストリームを提供する必要があるバスとラインを、GNDの直上のトップレイヤーに配置するのが最適です。RCやシリーズ終端で遅延させることができる制御信号などの他の信号は、バックレイヤーに配置することができますし、その他のサポートコンポーネントも同様です。しかし、両方の表面レイヤーにデジタルバスを持つ4層PCBが必要な場合、最良の実践は代替スタックアップを使用することです。 このスタックアップは、ノイズを抑制し、どこでもクリアなリターンパスを提供する最良の代替手段と言えるでしょう。これはSIG+PWR/GND/GND/SIG+PWRスタックアップで、信号と電力は上層でルーティングされます。これにより、電力レールは隣接するGNDプレーンに近接して配置されるべきであるため、非常に強力なデカップリングが提供されます。 この代替4層スタックアップについてもっと学ぶ このボードには、複数の電力レールがある場合に生じる可能性のある難しさが一つあります。4層ボードが両層に高速信号を必要とし、複数の電力レールと強力な電力整合性が必要な場合、標準のSIG/GND/PWR/SIGスタックアップは機能しません。ここで、2層を追加して6層スタックアップを構築することが最良の選択です。
Altium Need Help?