Skip to main content
Mobile menu
Discover
Develop
Agile
リソース&サポート
リソース&サポート
ラーニングハブ
サポートセンター
マニュアル
Webセミナー
Altium Community
フォーラム
バグの報告
アイディア
Search Open
Search
Search Close
サインイン
プリント基板のサプライチェーン
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
ホーム
プリント基板のサプライチェーン
プリント基板のサプライチェーン
部品不足やサプライチェーンの不安定さで、生産スケジュールが狂うことはありません。プリント基板のサプライチェーンと、設計に必要な部品を調達する方法について、ライブラリをご覧ください。
What is the PCB Supply Chain?
PCB Design and Development
Gaining Supply Chain Visibility with PCB Design
Overview
All Content
Filter
見つかりました
Sort by
最新
人気順
タイトル(昇順)
タイトル(降順)
役割
ECADライブラリ管理者
電気技術者
技術マネージャー
ITマネージャー
機械エンジニア
PCB設計者
購買・調達マネージャー
ソフトウェア
Altium Designer
Altium 365
BOM Portal
GovCloud
Octopart
Requirements & Systems Portal
SiliconExpert
Z2Data
コンテンツタイプ
ガイドブック
ビデオ
ウェビナー
ポッドキャスト
ホワイトペーパー
適用
EMEA
Americas
Elmatica社: 完全デジタル化のサプライチェーンを推進
1 min
Blog
最近、サンディエゴでのIPC APEX開催中に、Elmatica社のCEOのDidrik Bech氏と面会しインタビューする機会に恵まれました。毎年このカンファレンスに Real Time with IPC のゲストエディターとして参加し、Bech氏のような興味深い業界リーダーと出会う素晴らしい機会を得ています。フォローアップとして、OnTrackニュースレターの読者のためにBech氏に再度インタビューを依頼し、この魅力的なノルウェーを拠点とするPCBブローカーについて知ることができました。Elmatica社は30以上の国で存在感を発揮し、データ駆動型アプローチを使用して、顧客に比類ない透過表示を提供して完全にデジタル化されたサプライチェーンを実現する先頭に立っています。 Elmatica社CEO、Didrik Bech氏 Judy Warner: ご自分のキャリアと、Elmatica社の沿革およびモデルについて簡単に教えていただけますか。 Didrik Bech: Elmatica社は1971年にノルウェーのオスロで設立されました。会社は当初PCB設計会社でしたが、その後PCB製造機能を持ち、最終的には専門プリント基板ブローカーになりました。当社のミッションは、お客様の購買プロセスを完結させ、当事者間の説明責任を保証することで、パートナーに対する取引の透明性を実現することです。これは、当社の製品、つまりコンサルティング、調達、製造、および流通をプロセスに入れ込むことによって、お客様の製品開発プロセスを保護することを意味します。 当社はお客様の製品開発プロセス全体のパートナーで、設計段階の選択標準や価格の見積りについて助言を行うアイディア段階から、最初のプロトタイプの供給を検証して最終的な製品出荷において、適切な製造業者とコンプライアンスの側面が選択されているようにします。当社のシステムは自動的に全ての通信を追跡し、各プリント基板の100以上の特性を分析し、それを見積書で明確に確認できます。当社は綺麗なパワーポイントによるプレゼンテーションやマーケティング書類を提供するのではなく、何をどういう方法で行っているかを示すことにより、お客様への透明性を実現します。これらは当社のデジタルサプライチェーンのいくつかの要素で、当社のお客様の製品を守ることに特化しています。 私は8年前にこの会社に入社し、今は計48年間のキャリアで3番目のCEOを務めています。会社の財産と文化は2本の責任の柱で、育み発展させて将来の技術的機会に足並みをそろえる必要があります。Elmatica社は過去8年間以上にわたって新しい情報技術機能を開発していますが、これは能力の高い組織と先見の明のあるオーナーによって可能になっています。 ほとんどの会社で毎年従業員に変化があります。Elmatica社では、役職から離れる人はほとんどいません。この何をどんな方法でやるかについての安定性と情熱はお客様へも引き継がれています。そしてもちろん、当社はちょっとひねりを効かせて物事を行うのが好きで、たとえば最初の会社映画を作った時にはカルト映画 Lock
記事を読む
1:51
新しい Components パネル
1 min
Videos
記事を読む
真のECAD/MCAD共同設計によりPCB設計の配置エラーを排除
1 min
Blog
プリント基板設計に配置したコンポーネントが機械的な特徴と干渉するために、設計がやり直しになった経験はありますか? 1つでも干渉を見逃していた場合、最終的なシステムに回路基板を組み入れる段階で、大きな面倒を引き起こす可能性があります。私の実体験でも、部品の1つが最終的にデバイスの筺体に収納できなかったため、多大な労力を費やす結果となりました。そのレイアウトでは、大きな電解コンデンサに合わせて筺体に穴を開けるしか解決策はありませんでした。 今日のプリント基板設計では、基板のレイアウトを決定し、他の部分は別の担当者に任せるのではなく、真のECAD/MCAD共同設計を使用して、迅速かつ正確に作業を完了する必要があります。残念ながら、プリント基板CADの多くはこのタスクに適しておらず、設計者は依然としてレビューとプロトタイプの構築によりコンポーネントの配置を確かめる必要があり、このプロセスには多大な労力を必要とします。 幸い、いくつかのプリント基板CADでは部品の配置について機械的なチェックが可能で、しかもレイアウトの作成中に自分で行うことができます。私の使用している設計ツールに搭載されているこの機能により、多くの時間とコストを節約でき、面子も大いに守られました。そして、この機能はおそらく他の設計者の皆様にも同様に役立つことでしょう。もう少し詳しく説明しましょう。 従来型プリント基板CADでは部品の配置に苦労します 設計者である私たちは、コンポーネントの配置において多くのルールに従って作業を行ってきました。コンポーネントを信号の整合性や電源供給を考えてグループ分けし、基板上の様々なゾーンやリジョンに配置して、コンポーネントが最良に動作できるようにすることは、私たちにとって本能にも近い習性です。しかし、機械的な制約はまったく別種の問題で、従来の基板レイアウトツールで形状が3D表示されなければ、非常に面倒な作業となります。 基板レイアウトのシステムでは一般に、コンポーネントが2 ½ Dの形状として表示されます。つまり、コンポーネントの形状自体は2Dで、最大高のプロパティが付加されています。このため、コンポーネントのうち最大の高さなのはごく一部だけであったとしても、コンポーネント全体が同じ高さとして扱われます。 例として、直角D-Subコネクタを考えてみましょう。コネクタの基板側の端がもっとも高い部分ですが、直方体であるかのように、コンポーネント全体がその高さとして扱われます。設計を3Dで表示できないと、2Dでしか作業できず、最大高のプロパティに違反したときにDRC通知が行われるだけです。 従来の2D のPCB 配置表示では、クリアランスチェックを高さプロパティに頼っています 従来の配置のレビューとプロトタイプの構築は時間を要し高価です 私たちは何年にもわたり、2 ½ DのCAD環境での作業に満足していました(コンデンサがデバイスの屋根から飛び出したような場合は別ですが – しかし、嫌なことは思い出さないようにしましょう)。しかし今日では、IoT、航空宇宙、通信機器などにおいて、より小さなデバイスに収納できる、小型の基板が求められるようになり、従来よりも密集したコンポーネント配置を扱わなければならなくなりました。 2
記事を読む
目標BOM価格とPCBコスト見積もりに合わせて設計する
1 min
Thought Leadership
設計、部品、生産、組み立て、送料、さらにはファームウェアに至るまで、正確なPCBコスト見積もりを作成することは、新しいデザイナーにとって難しい課題です。確立された組織でさえも、設計中に発生する可能性のあるすべての問題を予測するのが難しいため、正確な見積もりを出すのに苦労することがあります。製造業者は、プロジェクトの生産と組み立て部分を処理するのに役立ちますが、新しい設計を生産に移すたびに、ボード用の部品を調達し、予算内に収まる必要があります。 過去には、部品の価格と在庫を得るために製造業者に電話をかけ回り、これらのデータを使用してPCBコスト見積もりを作成していました。PCB内の部品に関するBOM価格のような、より詳細な情報を事前に持っていることは、設計チームの時間を大幅に節約し、生産前の再設計のリスクを減らすことができます。過去に使用したベンダーからの古いBOM価格データに頼る代わりに、PCB設計ソフトウェアに組み込まれた材料表とコスト見積もり管理ツールの形で助けがあります。ここでは、これらの機能とクラウド接続設計アプリケーションを使用して、正確なBOM価格を確保し、予算内に収まる方法について説明します。 部品ベンダーから必要なデータ PCB設計チームは、PCBのコスト見積もりと正確なBOM価格を目指すために、完全なデータセットが必要です。これは設計と生産計画プロセスの一部に過ぎませんが、予算に大きな違いをもたらす可能性があり、フルターンキーサービスの必要性をなくすことができます。ここでは、部品ベンダーやメーカーから必要なデータの一部を紹介します: 価格:使用する部品の価格が予想通りであることを確認するために、最新の情報を入手してください。 在庫状況:設計に含まれる部品が在庫ありで注文可能であることを確認してください。 ライフサイクル情報:設計者は、コンポーネントが廃止されたか、EOL(製造終了)か、まだ生産中かを即座に識別できるべきです。 PCBフットプリント:更新されたCADデータとPCBフットプリントを持つコンポーネントは、設計時間を短縮できます。 価格割引:同じまたは類似のコンポーネントに対する量産割引は、プロジェクトを生産予算内に収めるのに役立ちます。 エンジニアリングは、設計が生産に移行する時点でイライラすることがあります。なぜなら、チームは突然、設計に必要な部品を入手できないことが判明し、重要なコンポーネントが入手不可能であることがわかったときに大規模な再設計を行わなければならなくなるからです。これらの頭痛の種を防ぐために、設計者は生産直前にコストと在庫を確認するのではなく、設計プロセスの早い段階で上記のデータをすべて入手する必要があります。 材料表管理ツールによって提供される承認済みベンダーへの クラウド接続を利用することで、再設計をめぐる多くのフラストレーションを解消できます。さらに、プロジェクトが生産予算内に収まるかどうかをすぐに確認でき、完成したボードの目標PCBコスト見積もりを立て、正確なBOM価格をまとめることが容易です。設計者がPCB設計ソフトウェア内で直接調達データにアクセスできる場合、これらの利点を実感できます。 目標BOM価格の設計方法 利益率が厳しいPCBを設計する経験があまりない場合、それは本当に目から鱗の体験になるかもしれません。プロトタイプの作成、限定生産、または特定の用途に特化したボードの設計に慣れているかもしれませんが、その際には部品の価格が主要な懸念事項ではなかったかもしれません。価格を主要な考慮事項として設計を始めると、各コンポーネントで1セント節約することが、重要なコスト削減につながることがわかります。 包括的な PCBコスト見積もりを開発する一環として、正確なBOM価格を取得することがあります。製造、組み立て、およびNREコストは、生産される各ユニットに按分する必要がありますが、これらのコストは製造業者に相談することで見積もることができます。これにより、BOM価格と単位あたりの部品予算の上限が設定されます。 ターゲットBOM価格を設計し、PCBコスト見積もりを作成するために従うことができるいくつかのヒントは次のとおりです: 重要なICやプロセッサーを最初に選択すること、これらはシステムの残りの部分がどのように動作するかを決定します。これらが入手不可能な場合、製造前に再設計が必要になる可能性があります。 トランジスタのような一部のコンポーネントには多くの同等品があるため、これらの部品が 在庫切れ、廃止、またはEOLの場合は代替品を探します。
記事を読む
ブラインド・ビア、バリード・ビア、スルーホール・ビアがPCB設計に与える影響
1 min
Thought Leadership
子供の頃、私はスーパーマリオのすべてに夢中でしたが、正直、誰もがそうでしたよね。特に、スーパーニンテンドーの古い学校版にはまっていました。プラットフォームからプラットフォームへと跳ねること、ピクセル化されたカメの甲羅を投げること、プリンセスを救うこと…なんて人生でしょう。ゲームの中で最高で、少し変わった部分は、あちこちにあるように見える小さな緑のチューブを出入りすることでした。それらを作ったのは誰?そもそもなぜそこにあるのか? 奇妙なことに、ほぼ一生の後、私は回路基板を見つめ、まったく同じ質問を自問していました。どこにも繋がっていないように見える小さな穴が、グラウンドプレーンやはんだマスクの上に文字通り散乱していました。ここで登場するのが、ブラインドビア、バリードビア、スルーホールビアです。 私たちが、世界が私たちの設計をより小さなスペースに押し込めようとしているという事実について話し続けるにつれて(同じ話、違う日)、これらの世界的な要求を満たすことを可能にする新しくてエキサイティングな技術的および製造上の進歩を学び続けます。多層ボード(高層カウント)の積層からフォームファクターの変更まで、ブラインドビアやバリードビア、そしてスルーホールビアを導入することで、さらに一歩踏み出します。 ブラインドビアとバリードビア:一歩進むか、毒キノコか? それぞれの緑の管がどこに繋がっているのかを発見しようとする過程で、どの秘密の部屋にたどり着くかわからないのが、半分の楽しみだったのではないでしょうか?恐れることはありません。スーパーマリオが緑の管から緑の管へと推測を続けさせることが目的であったとしても、HDI PCBを設計することは(願わくば)まったく逆です。厚い戦略書を見ることなく、PCB全体に穴を開ける場所と理由を正確に知るべきです。 ビアは、PCB層のトレースを通して穿孔され、別の層の別のトレースに接続するためだけの穴です。これらは、各層を何らかの方法で接続する必要がある多層PCBによく存在します。 多層プリント基板に組み込むことができるビアには、3つの異なるバージョン(ブラインドビア、バリードビア、スルーホールビア)があります: ブラインドビア:これらは、プリント基板の外層を内層に接続しますが、それ以上は進みません。したがって、4層のPCBがある場合、最初の2層にはトレースを通して穴が開けられますが、3層目や4層目には開けられません。 埋め込みビア:これらは、2つ以上の内部層を互いに接続します。再び、4層のPCBでは、第2層と第3層がドリルで穿たれて接続されますが、外側の層である第1層と第4層には穴が開いておらず、基板上では単に空白のスポットのように見えます。 スルーホールビア:今お分かりの通り、これらは文字通り「全体のボードを通して」穿たれ、外側の第1層と第4層を接続します(または4層を接続する他の組み合わせ)。 適切なビアの理解が設計の成長を促進します プリンセスを救うという壮大なミッションには重要でないように見えたこれらの緑のチューブは、中に飛び込んだり出たりするのがとても満足できる以外に利点はないようでした。一方、ビアは多層PCBにおいて重要な役割を果たします。 時代が進むにつれて、そして今日このごろの「小さいほうが良い」という考え方の中で、私たちは できるだけ多くのスペースを節約するという課題に直面しています。ビアを使うことで、理論上は、トップレイヤー(そこにはすべてのコンポーネントも配置されています)でスペースを取るトレースルーティングをすべて回避し、必要な配線を第2、第3、あるいは第4レイヤー内で行うことが可能になります。これは、スペースを節約する技術を探している一部の設計者にとっては神の恵みかもしれません。 ブラインドビア、バリードビア、またはスルーホールビアをボードに実装する際に得られるもう一つの利点は、トレース間の寄生容量が低下し、それが設計に深刻な影響を及ぼす可能性があるのを防ぐことです。この寄生容量の低下は、トレースリードを短縮することで実現された改善によるものです。必ずしも主な理由ではありませんが、正しく設計されていれば、ビアを設計に追加することで確実に利益を得ることができます。 ビア適用前のその他の考慮事項 席から飛び上がってどこにサインすればいいか探しているかもしれませんが、ビアを設計に取り入れることのいくつかの欠点があるため(なぜいつも欠点があるのでしょうか?)、ちょっと待ってください。 ビアと 多層基板は密接に関連しており、複数の基板に何かを行う場合、コストの考慮が必要になります。これには、1枚だけでなく、2枚、3枚、さらには4枚の基板を正確に同じ位置で貫通するビアの穴のドリル加工が含まれます。ドリル加工と積層のプロセスにわずかな公差エラーがある場合、基板は事実上使用不可能になります。
記事を読む
多層PCB設計の『パーフェクト・ワールド』を見つける
1 min
Thought Leadership
私はずっとクリント・イーストウッドの大ファンです。20世紀の都会にいた私としては、 ダーティーハリーが銃を少々使いすぎだという印象がありましたが、名無しの男のほうは手に負えない無骨さが時代にぴったりとマッチしていました。言うまでもなく、私は彼がごろつきを打倒したり、やくざ者よりも先に銃を抜いたり、女性を射止めたりするのをいつだって応援していましたが、最も興味をそそられたのは、彼が何でもあっという間に決断を下すことでした。もちろん、結果はそのときどきで違います。 良いときもあれば悪いときもあります。それどころか、かなり悲惨なときもあります。 PCBの設計でも、多層PCBを選択するかどうかによって結果が変わります。多層PCBを無用に使用する設計者は大勢いますが、それによって設計が複雑になったり、製造コストが上がったり、現場での修正や修復が実質的に不可能になったりします。 名無しの男が登場する大半の映画の筋書は、善人に対する悪人のむごい仕打ちや卑劣な行為から始まり、ヒーローが悪を正してエンディングを迎えます。この筋書きに沿って、PCBの設計と開発を失敗させ得る要因と、多層PCBを使用するかどうかの決断に組み入れるべき要素について見ていきましょう。 多層PCBのハートブレイク・リッジ/勝利の戦場 PCB設計の観点から見ると、多層PCBはつい使いたくなってしまうものです。結局ところ、「小さければ小さいほうがよい」という考え方は現在の電子設計全体に広がっているようです。ただし、小さいことが設計の主な検討事項でない限り、その罠を避けるべき大きな理由があります。その例をご紹介しましょう。 設計の複雑性: 多層PCBを設計する際は、すべてのスルーホールやビアを正しく整列させることが不可欠です。ここにミスがあると電流に影響が及び、取り付けに関する問題が発生することがあります。また、奇数のレイヤーや厚さの異なる内層を使用すると、基板の湾曲やねじれが生じることがあります。この場合は基板が取り付け不可能になったり、テスト用に格下げされたりします。 これはまずい事態です。さまざまな種類の信号が多層PCBで配線される通信アプリケーションでは、一致しないインピーダンスやクロストークが原因で性能の問題が発生する場合があります。 これもまずい事態です。 製造コストの増加: 多層PCBの製造には、他の基板よりもはるかに高額なコストがかかります。必要になる材料も時間も増えるうえ、技術者は高度な技能を持っていなければなりません。レイヤー数を2つから4つに増やしただけで、製造コストが100%増加することもあります。 これはまずい事態です。 ベンチの修復が困難または不可能: 製造プロセスでも見られるように、小さなエラーは発生するものです。レイヤー数が奇数であったり、レイヤーのサイズが異なっていたりする基板の場合は、これが特にあてはまります。通常、シングルレイヤー(またはダブルレイヤー)のPCBでは、こうしたエラーを容易に修復して基板を使用できる可能性があります。ところが、内層に問題がある場合は修復が実質的に不可能で、基板は使い物になりません。 これはまずい事態です。 見落とされてしまうことがあるもう1つの問題は、レイヤーの増加による熱の上昇です。これは、製品を現場でしばらく稼働させないと表面化しません。製品が機能停止にいたるほど問題が深刻な場合は、Recall(リコール)、Redesign(再設計)、Remanufacture(再製造)の「3R」になってしまいます。 これは悲惨な事態です。 おわかりのように正しい選択をしない限り、多層PCBは重大な問題を引き起こす原因になります。ただし、長所もあります。選択と設計のプロセスについて慎重に検討すれば、クリント・イーストウッドのようにさっそうと夕陽の中へ去って行けるでしょう。
記事を読む
PCBの実装図を作成して設計の意図を明確に伝える
1 min
Thought Leadership
「一部、組み立てが必要です」この文言は、買ったばかりのものに心を躍らせていた人を恐怖に陥れます。実は、私にもそんな経験があります。それは、子どもたちへのクリスマスプレゼントとして購入したサッカーのテーブルゲームでした。サイズが大きかったために、私はゲームを箱に入れ、クリスマスイブの夜遅くまでガレージに隠しておきました。「それほど難しくはないはずだ」そう高を括った私は、子どもたちがベッドに入ってから、テーブルゲームを組み立て始めました。何杯ものカフェインを摂取し、指の節に痣を作り、部品を失くし、私を「行儀の悪い人リスト」に載せてしまうようないくつかの罵りを口にしながら、夜が明ける直前になってようやくベッドに入りました。クリスマスの朝の家族写真には、テーブルゲームで楽しそうに遊ぶ子どもたちと、もう1杯のカフェインにしがみつくゾンビのような父親が写っていました。 組み立てが必要になるものはたくさんありますが、PCBの世界では実装が必ず必要になります。設計者は部品の配置やトレースの配線中に、実装について常に考えているわけではありません。ただし単純な事実は、設計者が設計したものを誰かが実装しなければならないということです。そこで必要になるのが、製造業者に基板の実装方法を伝えるための実装図です。 これまでに実装図を作成したことがない場合は、この投稿を入門として活用できます。ご安心ください。これは分厚いマニュアルではありませんし、幼稚園に通う私の子どものお絵描きのような設計の見取り図も含まれていません。ここで必要になるのは、実装図のさまざまな要素のほか、PCBのレイアウトツールが実装図の作成にどう役立つのかについて理解することだけです。一番よいところは、ここに含まれる情報が読んでいただくものであり、実際の実装は必要ないという点です。 PCBの実装図には、部品の外形やデジグネータなどの要素が記載される PCB実装図の項目 連携する製造業者にとって使いやすく正確なものにするために、実装図は複数の形態で作成できます。設計中はPCBが実際にどのようになるのかについて、必ず実装図で製造業者に伝えるようにします。自分が連携している製造業者に留意することは重要ですが、大半の実装図に共通する下記の基本的な要素を理解しておく必要があります。 実装図の形式: CADシステムには、図面の形式が自動的に生成されるものと、個別のライブラリーの形状として図面を手動で作成する必要があるものがあります。いずれを使用する場合も、形式と設計データベースを組み合わせて実装図を作成することになります。 基板外形: 製造図と同様に、基板外形を表示します。基板のサイズに応じ、画像を縮尺して実装図の形式に合わせたり、画像を拡大して詳細を表示したりすることができます。 部品の形状: 基板外形内には、基板に半田付けされるすべての部品の形状とそれらのデジグネータを含めます。 機械部品: 取り付け工具を使って基板に配置する機械部品も表示します。こうした部品は標準的なPCBフットプリントではないかもしれませんが、形状を個別に追加または描画しなければならないことがあります。機械部品の例としてはejector handleが挙げられます。これは電気部品ではないため、回路図に表示されない場合もありますが、実装図と 部品表には含める必要があります。 実装の注記: 基本的な実装の詳細、業界の標準や仕様に関する参照、特別な要素の位置が記載される指示の一覧です。 識別ラベルの位置: バーコードや実装タグなどの識別ラベルは、実装の注記に含まれる特定のラベルへの参照や描画ポインターを使って含めます。
記事を読む
Pagination
First page
« First
Previous page
‹‹
ページ
23
ページ
24
ページ
25
ページ
26
現在のページ
27
ページ
28
Next page
Next ›