Skip to main content
Mobile menu
PCB設計
Altium Designer
世界中の設計者に支持される回路・基板設計ソフトウェア
CircuitStudio
エントリーレベルでプロ仕様のPCB設計ツール
CircuitMaker
個人、オープンソース、非営利団体のための無料PCB設計ツール
Altiumに乗り換える理由
他のPCB設計ツールからAltiumに乗り換える理由と方法を確認する
ソリューション
Altium Enterprise ソリューション
デジタルトランスフォメーションへの 最終ステップ
電子部品プラットフォーム
世界中の技術者が利用するOctopart
Altium 365
リソース&サポート
製品情報
無償評価版
ダウンロード
拡張機能
リソース&サポート
Renesas / Altium CEO Letter To Customers
全てのリソース
サポートセンター
マニュアル
Webセミナー
コミュニティ
フォーラム
バグの報告
アイディア
教育
専門家育成トレーニング 資格取得プログラム
Comprehensive Career Training for Altium Software and Design Tools
大学・高専
Academic Licenses, Training, Sponsorships and Certificates for Higher Education
オンラインストア
Search Open
Search
Search Close
サインイン
Octopart
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
無料トライアル
Octopart
Highlights
All Content
Filter
Clear
Guide Books
ジャストインタイム供給チェーンがジャストインケースへと移行
経済学者は最近、インフレが粘着性を持っていると言っていますが、インフレが粘着性を持つなら、部品不足もまた粘着性があります。半導体在庫が24ヶ月ぶりの水準に追いつくという需要の転換が見られるにもかかわらず、ローリングショーテージは依然として根強い問題であるようです。 どんな法律を通過させても、多くのコンポーネントでローリングショーテージが続くようです、少なくとも短期間は。 過去1年間にわたり、大手および小規模の設計会社が使用する電子部品の調達戦略は、ジャストインタイムからジャストインケース(JIC)へとシフトしました。サプライチェーン管理におけるジャストインケースアプローチは、在庫の保持、事前計画、およびサプライヤーベースの拡大を要求します。これは明らかなシフトのように思えますが、過去1年間に多くの個々のデザイナーがこれを採用しています。しかし、サプライチェーンの高ボリュームエンドでは、JICサプライチェーン管理の実装は、2つのディストリビューターからの注文以上の意味を持ちます。 ジャストインケースサプライチェーンとは何ですか? 表面上、ジャストインタイム(JIT)とジャストインケース(JIC)の違いは単純です:JICでは、後で必要になると予想して在庫を保持しますが、JITでは在庫を少なくしようとします。電子部品サプライチェーンの現在の構造は、過去数十年にわたり、いくつかの企業がJITを実装することを大いに奨励しましたが、これはグローバルな配送、保管、および物流オペレーションによって可能にされました。好みのディストリビューターに行き、注文を入れ、数日以内にコンポーネントを受け取ることを期待します。 COVIDはこれを一変させ、JITサプライチェーンを破壊することができる3つの要因を迅速に示しました: 部品製造センターの一時的な閉鎖で、常に追いつく状態になります 消費者に流動性を注入することで、生産の停止にもかかわらず需要が急増します 現在の供給から引き出される地政学的緊張 最近数十年にわたり、#1または#3が個別に発生することがありましたが、#2で示唆される市場への2回の流動性注入のようなものは見られませんでした。2020-2022年には、これら3つが同時に発生したので、JITモデルが常に需要に追いつこうとしているのも不思議ではありません。最も打撃を受けたエリアの需要が多少下がったとしても、在庫はまだ追いつくことができません。2022年8月の Electronic Design to Delivery Indexデータからの統合回路の供給と需要のデータを以下に示します。 プロトタイピング対スケーリングにおけるJICサプライチェーン この次のセクションを自慢するために書くわけではありませんが、JICは1年以上前からクライアントに勧めている戦略です。2021年の中頃、今後の生産ラインに必要な部品を前もって購入することは明らかに思えました。これは、完全な代替品がない部品に特に当てはまりますが、多くの高度な電子部品がそうです。私が取り扱った例には以下のものがあります: 多くの特殊ASIC(通常はセンサーインターフェース) MCU SoCs
Guide Books
LNAとPAの違いは何ですか?
高周波信号の取り扱いや信号チェーン用のコンポーネントの選択は十分に難しい作業です。アンプは、信号が目的地に到達するために必要なブーストを提供するため、無線システムの信号チェーンにおいて重要な部分です。これらのシステムでは、主に2種類のアンプが登場する傾向があります:低雑音アンプ(LNA)とパワーアンプ(PA)です。これら2種類のアンプは似たような機能を果たしますが、信号チェーンの異なる場所で活躍します。 LNAとPAのコンポーネントの違いは、アンプ選択についてもっと基本的なことを示しています:負荷に配信される前にコンポーネントによってどの信号の側面が操作されているかです。無線システムでは、これらのアンプは信号の放送と受信の一部としてRFフロントエンドに両方とも登場するため、これらのコンポーネントは慎重に選ばれ、正しい信号電力範囲内で動作するべきで、最良の結果を提供します。この記事では、これら2種類のコンポーネントの違いを検討し、多くの周波数範囲で動作するRFシステムのための高度な部品の例をいくつか提供します。 RFフロントエンドのアンプ RFフロントエンドでは、一般的にLNAとPAはそれぞれRXとTX側で使用されます。これは、無線通信を必要とする多くのRFシステムで一般的なケースです。PAとLNAのセクションは、しばしばアプリケーションプロセッサーや高度に統合されたRFトランシーバーに組み込まれています。オーディオでは、パワーアンプがスピーカーを駆動し、LNAが近くの環境から微弱な声を集めるためにマイクロフォンで使用されるような類似の使用例があります。 下の画像は、アンプがRFフロントエンドで一般的にどこに現れるか、およびこれらのアンプが信号チェーンのTXおよびRX側でどのように実装されているかを示しています。このタイプのTX/RXアーキテクチャは、統合トランシーバーブロックを持つチップや、より高い電力で動作する離散コンポーネントを使用するシステムで典型的です。出力のスイッチはオプションで、TXとRXを異なる時間窓に分けるために単一のアンテナで時分割多重(TDD)を実装するために使用されます。しかし、これは必須ではなく、RX/TXラインは直接それぞれのアンテナに接続できます。 RX側では、LNA入力は直接デモジュレーター/ダウンコンバーターに供給され、受信した変調信号からデータを抽出します。LNAはRXアンテナによって受信された入力のみを扱い、信号が受信機の閾値感度を超えることを保証するためにちょうど十分な利得を提供することを意味します。これはRX信号チェーンにわずかな利得を適用するだけで受信範囲を効果的に拡張します。 TX側では、パワーアンプは変調/アップコンバージョンステージからの出力を取り、最大電力を負荷に供給するために増幅します。アンテナへの直接接続の場合、アンテナやシステム内の他のコンポーネントに与えられる電力は、反応性インピーダンスにマッチングする必要があるかもしれません。これは、以下で説明されるように、最大電力伝達を達成するために非線形コンポーネントとの共役インピーダンスマッチングを必要とします。 これらの点を念頭に置いて、それぞれのタイプのアンプをもっと詳しく見ていきましょう。 パワーアンプ パワーアンプの目的は非常にシンプルです:最大限のパワーを最小限の信号歪みで負荷に供給することです。信号レベルの観点から、パワーアンプは信号チェーンの帯域幅内でノイズフロアに比べてパワーに関して信号対雑音比を最大化するべきです。これは非常にシンプルで明白なアンプの機能と聞こえるかもしれませんが、 他のタイプのアンプについての記事で議論したように、異なるアンプは異なる信号入力を扱い、信号チェーン内の異なるタイプの負荷に対応しようとします。 負荷に最大限のパワーを供給するためには、信号チェーン内で共役インピーダンスマッチングが必要です。MHzからGHz範囲で動作するパワーアンプは、50オームの出力インピーダンスで動作することができるので、アンテナは実インピーダンスマッチングを提供するために50オームのインピーダンスに設計することができます。アンテナのインピーダンスがリアクティブな場合、受動部品を使用したインピーダンスマッチングネットワークが必要になるか、カスケードインピーダンストランスフォーマーが必要になります。後者は、MHz周波数で動作する場合に物理的に大きなシステムでのみ実現可能ですが、高GHz周波数ではボードを大きくすることなくこれを行うことができます。 インピーダンスマッチングについてのもう一つの重要な点は、単純な共役マッチングは実際にはほとんどの状況でTXアンテナに最大パワー伝達を実現しないということです。これは、パワーアンプを飽和点(1 dB圧縮点付近)に非常に近い状態で動作させることが一般的だからです。この状態では、パワーアンプの伝達関数が非線形になり始めます、下記のように。 この状態では、パワーアンプとその負荷の間に非常にわずかなインピーダンスの不一致が残っている場合に最大パワー伝達が発生します。これは、最大パワー伝達値が入力パワーレベルの関数であり、最適なインピーダンスマッチングを決定するための最適化問題で超越方程式を解く必要があるためです。 ロードプル分析と呼ばれるシミュレーション技術を使用して、最大パワー伝達を提供する最適な不一致を決定することができます。 パワーアンプの例 パワーアンプは、標準アンプクラスのいずれかで利用可能であり、コンポーネントはオーディオからマイクロ波にわたる多くの周波数範囲で利用可能です。 パワーアンプを選択するために使用される重要な仕様には以下が含まれます: 必要な周波数でのゲイン
Engineering News What's New
2022年のパーツまとめ
2021年は回復力、再発明、そして革新の年でしたが、2022年はついにCOVID-19とサプライチェーンの混乱のトンネルの終わりに光が見えた年として記憶されるでしょう。サプライチェーンは2022年の後半を通じて徐々に正常化し、今後も運用の段階的な改善が続くと予想されます。 しかし、2022年には新たなグローバルな脅威も現れました。世界経済フォーラムによると、私たちはインフレ、気候変動、世界的な紛争の組み合わせによって引き起こされる一連の連鎖的かつ関連する危機による「ポリクライシス」の瀬戸際にいるかもしれません。 (参照) それでもなお、特に技術セクターでは楽観と成長が続いています。デジタル化は驚異的な速度で加速し続けました。2022年の全世界のインターネットトラフィックは 4.8ゼタバイトと推定されています - これは4.8 兆ギガバイトで、2020年以来50%の大幅な増加です。 私たちの観点から見ると、2022年の電子業界の革新と回復力が輝いていました。Octopartのウェブサイトには900万人以上のユニークビジターが訪れ、月間の平均検索ボリュームは275万セッションを超え、昨年のサイトデータは業界の進む方向を見るのに役立つ豊富な情報を提供しています。 それでは、2022年の数字を見て、どのようなトレンドが浮かび上がるか見てみましょう。 Octopart 検索統計 & トレンド まず、今年の検索メトリクスを見てみましょう。検索とは、検索結果ページのローディングによって結果が得られた回数を指し、「最も一般的な検索用語」とは、クエリで最も頻繁に現れた用語を指します。 実施された検索の総数: 83,293,849 2022年にOctopart検索エンジンで実施された検索の総数は8300万を超えました。これは2021年と比較して1750万回の検索が増え、27%の健全な増加でした。 この検索ボリュームの増加は、主に継続するサプライチェーンの混乱によって駆り立てられました。年初には、多くの部品が単純に入手不可能でした。これは、エンジニアが必要な部品をより熱心に検索する必要があることを意味していました。そして、価格が上昇しているため、多くの人が利用可能な最良の価格で部品を見つけていることを確認するために追加の検索を行うでしょう。 最も検索されたMPN
ADCを適切にグラウンドする方法
ADCを接地すると、ボードへのノイズ注入に影響を与え、混合信号システムを構築する際には慎重に対処する必要があります。
Engineering News
PCB用の5日間のチップ供給があったら、あなたは何をしますか?
需要の圧力と半導体の長期的な不足により、米国の企業は5日分のチップ供給に減少しています。
Thought Leadership
PCB実装用トランスについて知っておくべきすべてのこと
交流入力を直流に整流する前に、PCB実装用トランスを使用して主電源を目的の電圧に降圧する必要があります。
Pagination
First page
« First
Previous page
‹‹
ページ
19
現在のページ
20
ページ
21
ページ
22
ページ
23
ページ
24
Next page
››
Last page
Last »
他のコンテンツを表示する