Skip to main content
Mobile menu
PCB設計
Altium Designer
世界中の設計者に支持される回路・基板設計ソフトウェア
CircuitStudio
エントリーレベルでプロ仕様のPCB設計ツール
CircuitMaker
個人、オープンソース、非営利団体のための無料PCB設計ツール
Altiumに乗り換える理由
他のPCB設計ツールからAltiumに乗り換える理由と方法を確認する
ソリューション
Altium Enterprise ソリューション
デジタルトランスフォメーションへの 最終ステップ
電子部品プラットフォーム
世界中の技術者が利用するOctopart
Altium 365
リソース&サポート
製品情報
無償評価版
ダウンロード
拡張機能
リソース&サポート
Renesas / Altium CEO Letter To Customers
全てのリソース
サポートセンター
マニュアル
Webセミナー
コミュニティ
フォーラム
バグの報告
アイディア
教育
専門家育成トレーニング 資格取得プログラム
Comprehensive Career Training for Altium Software and Design Tools
大学・高専
Academic Licenses, Training, Sponsorships and Certificates for Higher Education
オンラインストア
Search Open
Search
Search Close
サインイン
Home
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
無料トライアル
Highlights
All Content
Component Management and Libraries
Data Management and Version Control
Manufacturing Outputs and Compliance
Schematic Capture and Circuit Design
Filter
Clear
Tags by Type
全て
ガイドブック
ニュースレター
OnTrack
ビデオ
ウェビナー
ホワイトペーパー
ソートリーダーシップ
Software
全て
Altium 365
Altium Designer
トレーニング
CircuitMaker
CircuitStudio
Concord Pro
Tasking
PDN Analyzer - 電流密度解析ツール (Legacy)
Non-Altium Products
タイトとルーズの差動ペア間隔と結合を使用すべきか?
トレースインピーダンスについてや、特定のインピーダンスを達成するために必要なトレースサイズの計算方法に関して多くの質問を受けます。シングルエンドトレースの適切なトレース幅を決定することと同じくらい重要なのが、差動ペアの2つのトレース間の適切な間隔の決定です。そこでの問題は、差動ペアのトレースが互いにどれくらい近くにある必要があるか、そして「密接な結合」が本当に必要かどうかです。 この設計ガイドラインについて興味深いのは、おそらく最も不明確に定義されている唯一のPCB設計の経験則であることです。「緩い結合」や「密接な結合」が数値的には具体的に何を意味するのか?10人の異なる信号整合性の専門家に尋ねると、20種類の異なる回答を得るでしょう! この記事では、差動ペアの間隔に関する密接な結合と緩い結合の現実的な説明に近づきたいと思います。また、差動ペアの間隔がインピーダンス、差動モードノイズ、共通モードノイズの受信、終端などにどのように影響するかについても考察します。見ていくと、密接な結合(それが何を意味するにせよ)に焦点を当てることにはその価値がありますが、しばしば間違った理由で必要とされがちです。 差動ペアの間隔が信号整合性に与える影響 上記で触れた各次元について見ていきましょう。差動ペアの間隔がどのような役割を果たし、適切な値をどのように設定するかを正確に理解します。 インピーダンス 間隔によって影響を受ける差動ペアの主要なパラメータはインピーダンスです。差動ペアのインピーダンスは、各トレースの自己容量と自己インダクタンス、および各トレース間の相互容量と相互インダクタンスに依存します。これは、異なるペアの典型的なインピーダンスの式を 奇数インピーダンスと差動インピーダンスに分解する必要があることを意味します。これらは以下のように定義されます: 相互インダクタンスと容量は、2つのペアに等価の合計インダクタンスと容量を与えるために存在します。上記の方程式では、損失(伝送線インピーダンス方程式のRとG)を無視していますが、ここで重要なのは間隔に注意を払うことです。 ペアを近づけるほど、 L Mと C Mが大きくなるため、差動インピーダンスは小さくなります。両方の L Mと C Mは、間隔が無限大になるとゼロに収束します。 言い換えると、 差動インピーダンス目標(標準で指定されているか、測定から決定されている)に到達するように設計している場合、二つのペアをあまりにも近づけてはいけません。そうすると、差動インピーダンスが小さすぎるため、インピーダンス目標を違反することになります。しかし、間隔を小さくすると、二つのトレース間の電場と磁場がルートの長さに沿って集中し、損失が増加します。
PCB電源レイアウトのガイド
次回のPCB設計でリニア電源とスイッチモード電源を使用する場合は、このクイックガイドに従ってください。
エレクトロニクス製造における製品ライフサイクル管理
この記事では、電子製造における効果的な製品ライフサイクル管理(PLM)ソリューションについて取り上げます。電子製品の開発をシームレスかつ痛みなく管理する方法を読んで学びましょう。
Newsletters
OnTrackニュースレター: 製造を踏まえた設計、差分ペア、頭脳食 – 2021年10月
2021年10月 第5巻 4号 記事全文 | ビデオを見る | 頭脳食 1クリックでデザインを製造へ 回路基板の設計、シミュレーションの実行、部品の調達、正確なBOMの作成、出力ファイルの生成が完了した後、その場で「製造へ送信」ボタンを押すだけでよいとしたらどうでしょう? 実現しない夢のように思えるかもしれませんが、Macrofab社のMisha Govshteyn氏への今回のインタビューでは、近い将来、この夢を実現するためにアルティうむとどのように提携していくかを知ることができます。 全文はこちらから 差動ペアとは何ですか? ► 今すぐビデオを見る Altium Designerの基本機能を1日で習得! P板ドットコム様と共同で無料のオンラインセミナーを開催します。このイベントでは、Altium Designerをこれから始める方向けに主要機能や基本操作について紹介します。回路図作成、部品データ検索、基板レイアウト、DRC、ライブラリ作成、製造・実装データ出力などについて学ぶことができます。ぜひお気軽にご参加ください。
2層PCB上のUSBインターフェースのための配線要件
以前のブログで、デジタル信号を使用したルーティングとレイアウトをサポートするための2層PCBのルーティングルールを準備する際の基本的なポイントについて説明しました。特に、I2CやSPIのようなデジタルインターフェースをサポートするために必要な基本的なスタックアップとルーティングルールを見てきました。これらのインターフェースを扱う際、いくつかのシンプルなガイドラインがあなたのボードの信号整合性を保証し、EMIを減らすのに役立ちます。 では、USBのようなインピーダンス制御インターフェースはどうでしょうか?インピーダンス制御の必要性、そしてそれをいつ違反できるかを知ることが、2層PCB上でUSBのようなものをルーティングする際の主なポイントです。この記事では、USBのような高速プロトコルをどのようにルーティングすべきかを示します。具体的には、USBデータを運ぶトレースに受け入れることができる長さ制限を含む、ボードのルーティングに必要な重要な設計ルールを見ていきます。このシリーズの前の記事をまだ読んでいない場合は、USBルーティング要件に設定される制限を理解するために必要な概念的な基盤を築くので、ぜひご覧ください。 始めに:USB高速ルーティング要件 前回の2層PCBルーティングに関する記事では、インピーダンスマッチングを適用することなく設計できる最長のライン長を決定する手順について見てきました。私たちは、伝送線の長さに沿った入力インピーダンスの偏差をどの程度許容できるかに依存して、長さの限界が決まることを発見しました。特に、信号の移動距離の10%から25%を重要な要因としてトレース長を制限するかどうかによります。 このデモでは、このボード上でのUSB 2.0のルーティングをHigh Speed規格で見てみたいと思います。特定の理由からこの規格に焦点を当てています。USB 2.0(High Speed)は、古いデバイスとの接続性を提供するとともに、高速データ転送率を実現し、Arduinoのような人気のプラットフォームでType Bプラグとしてまだ使用されています。 2つの可能な設計を例示するために、USB 2.0の2つの仕様(Full SpeedとHigh Speed)のデータレートと立ち上がり時間を比較しました: 最小ドライバ立ち上がり/下がり時間 - 500 ps(High Speed) -
フェライトコアの選択と設計に関する判断事項
トランスを設計するとき、またはフェライトコアコイルを使用するときは、正しい設計手順を使用する必要があり、そして最終テストを実際に行うことに代わるものはありません。手順を見ていきましょう。
Pagination
First page
« First
Previous page
‹‹
ページ
76
現在のページ
77
ページ
78
ページ
79
ページ
80
ページ
81
Next page
››
Last page
Last »
他のコンテンツを表示する