Altium Designer - 回路・基板設計ソフトウェア

簡単、効果的、最新: Altium Designerは、世界中の設計者に支持されている回路・基板設計ソフトウェアです。 Altium DesignerがどのようにPCB設計業界に革命をもたらし、設計者がアイデアから実際の製品を作り上げているか、リソースで詳細をご覧ください。

Filter
見つかりました
Sort by
役割
ソフトウェア
コンテンツタイプ
適用
フィルターをクリア
SAPによるウルトラHDI PCB製造 超高精細HDI PCB製造における半加工プロセス(SAP)の探求 1 min Blog PCB設計者 電気技術者 購買・調達マネージャー +1 PCB設計者 PCB設計者 電気技術者 電気技術者 購買・調達マネージャー 購買・調達マネージャー 製造技術者 製造技術者 PCB技術が進化し続ける中で、超高密度インターコネクト(UHDI) PCB製造のような新しい製造技術が信じられないほどの可能性を解き放っています。最も変革的な進歩の中には、従来の減算エッチングでは達成できなかったより細かいトレースとスペースを実現する、半加算プロセス(SAP)と修正半加算プロセス(mSAP)があります。これらの革新は、PCB設計の限界を押し広げ、前例のない精度で複雑な回路を製造することを可能にしています。 PCB製造の文脈では、半加算プロセス(SAP)は、従来の減算方法からの脱却を提供し、減算エッチングで可能だった2ミルの閾値をはるかに下回る、これまで達成できなかったトレースとスペースを可能にします。SAPプロセスは、銅のような導電性材料を追加して回路を形成することを可能にし、それをエッチングで取り除くのではなく。この技術は、先進的な材料と組み合わせることで、高性能で小型化されたデバイスを含む次世代の電子機器をサポートする超微細な特徴サイズの扉を開きます。 PCB製造における半加算プロセスの主な利点 極端なミニチュア化 SAPおよびmSAP技術で最もエキサイティングな機会の一つは、PCBフットプリントを大幅に削減できる能力です。トレースとスペースの寸法がサブミクロンレベルに縮小することで、設計者は全体的な電子システムのサイズを劇的に小さくするか、または解放されたスペースを利用して、より大きなバッテリーや強化された機能性などの追加コンポーネントを統合することができます。これは、スマートフォン、ウェアラブル、IoTデバイスなど、スペースがプレミアムなデバイスにとって特に重要です。 簡素化されたレイヤリングと向上したルーティング効率 これらのプロセスのもう一つの重要な利点は、PCB設計で必要なレイヤー数を削減できる可能性です。タイトピッチのボールグリッドアレイ(BGAs)を持つコンポーネントや標準的な設計であっても、より少ないレイヤーで複雑な信号をルーティングできる能力は、コストと複雑さの両方を削減できます。レイヤーが少ないということは、マイクロビアとラミネーションサイクルも少なくなり、製造時間が短縮され、全体的な収率が向上します。機能性を維持または向上させながらレイヤー構造を簡素化できる能力は、信頼性と性能の両方の観点から大きな勝利です。 改善された信号整合性と精度 ミニチュア化とレイヤー削減は具体的な利点ですが、SAPプロセスは電気性能を大幅に向上させることもできます。最も重要な改善点の一つは、信号の整合性です。半加算プロセスは、より広範な減算エッチングプロセスではなく、正確なイメージング技術に依存しているため、トレースの幅と間隔をより細かく制御できます。これにより、インピーダンスの制御がより厳密になり、信号の劣化が減少し、これらの技術を高速デジタルおよびRFアプリケーションに理想的にします。 半加算エッチング対減算エッチング:簡単な概要 従来の減算エッチングプロセスは、銅被覆されたラミネートから始まり、不要な銅をエッチングして回路パターンを形成します。このプロセスは効果的ですが、銅の厚さと使用されるエッチング方法のため、細かいトレースとスペースを達成することには限界があります。 対照的に、半加算プロセスは、非常に薄い銅層または純粋な加算方法の場合は銅が全くない状態から始まります。銅は選択的に追加され、望ましいパターンを作成し、薄いシード層のみが除去される必要があります。この精度により、製造業者のイメージング能力にもよりますが、トレースは25マイクロン(またはそれ以下)という非常に細かい特徴を実現できます。 改良半加算プロセス(mSAP) 変更された半加算プロセス(mSAP)は、SAPの拡張であり、スマートフォンのような消費者向け電子機器の大量生産によく使用されます。主な違いは、開始する銅層にあります。mSAPはやや厚い箔から始まり、その結果、やや精密でないトレースプロファイルになります。mSAPは優れた特徴サイズを可能にしますが、トレース/スペースの範囲は通常30ミクロンで、開始する銅が厚いためトレースはより台形の形状をしています。 これらの違いにもかかわらず、mSAPは従来の減算法よりもはるかに細かい特徴を実現し、標準的なPCBと高度な基板レベルの製造技術の間の橋渡しと見なされています。このアプローチは、コストに敏感な大量アプリケーションで重要です。 基板のようなPCB(SLP)と超HDIの未来 この分野で頻繁に使用される用語は「基板のようなPCB」(SLP)で、これは加算または半加算プロセスで構築された回路基板を指します。SLPは、半導体基板の精度に近づく細かい特徴を可能にしますが、はるかに大きなPCBパネル上です。これは、伝統的なPCB製造のコストとスケーラビリティの利点を犠牲にすることなく、ミニチュア化が求められるアプリケーションにとって特に有利です。 典型的なSAPおよびmSAPプロセスフロー SAPとmSAPの両方について、プロセスフローは類似した手順に従います: 記事を読む
高速設計における信号反射の理解 高速設計における信号反射の理解 1 min Blog シミュレーションエンジニア シミュレーションエンジニア シミュレーションエンジニア はじめに 信号反射とインピーダンスマッチングに関する工学は、高速デジタルシステムの設計に関連する基本的なトピックの一つです。高ビットレートのデジタルシステムの場合、ビットの状態「0」と「1」についての情報が矩形波信号の形で送信されるとき、上昇(または下降)エッジの立ち上がり(または下がり)時間は、バイナリ信号の周波数に対して無視できると想定されます。しかし実際には、デジタル信号が無限に速く上昇または下降することはありません。立ち上がり(および下がり)時間は、送信機、受信機のパラメーター、および伝送路の物理的特性を含む信号経路のパラメーターによって決定されます。 高速システムの場合、立ち上がり時間と下がり時間は1ns以下と短くなることがあります。デジタルシステムのバイナリ信号の周波数は数GHzに達することがあり、比較的矩形の形状を維持するためには、上昇および下降エッジはビット期間の一部であるべきです。 電磁波の伝播速度(伝送線路内の電圧と電流の伝播)は、伝送線路の種類や基板の種類など、いくつかの要因に依存します。例えば、FR4基板とマイクロストリップ伝送線路の場合、伝播速度は約160Mm/s(メガメートル毎秒)または525Mft/s(メガフィート毎秒)です。もしエッジの立ち上がり(または立ち下がり)時間が例えば200psであれば、立ち上がり(または立ち下がり)エッジは伝送線路を立ち上がりまたは立ち下がり時間中に32mmまたは1.25インチ移動します。 信号形状を保持するかどうかは、PCBに沿った伝送線が、立ち上がり(または立ち下がり)エッジが移動する距離と比較して長さがある場合に、インピーダンスの連続性を維持し、受信側で適切な終端を行うかどうかに依存します。非常に短い接続やデジタル信号の立ち上がり(立ち下がり)時間が遅い場合、ここで説明されている反射の現象は観察されないかもしれず、スキップされる場合があります。経験則として、信号エッジが移動する距離(つまり、伝播時間と伝播速度の積)が伝送長の10%以上である場合は、出力、入力、および伝送線を適切にマッチングすることが求められます。この手順はインピーダンスマッチングと呼ばれ、PCB上のトレースの設計および抵抗器で構成されるマッチングネットワークを含みます。 インピーダンスマッチングと抵抗マッチング インピーダンスマッチング条件を決定する関係はよく知られています。TXの出力インピーダンスが受信機のインピーダンスの複素共役であり、送信機と受信機を接続する経路の抵抗が送信機と受信機の実部と同じである場合、信号経路はマッチしています。デジタルシステムの実際のケースでは、送信機または受信機経路の複素共役インピーダンスマッチングネットワークを実装することによってマッチングは行われません(これは、任意の虚数インピーダンス成分をキャンセルするために信号線にインダクタとキャパシタを追加する必要があります。また、このタイプのマッチングは通常狭帯域なのでデジタルシステムでは実用的ではありません)。 一般的な実践は、送信および受信ICの抵抗部分のみをマッチさせ、伝送線の特性インピーダンスを純粋に抵抗的にすることです。この場合、必要なマッチングを提供するためには抵抗器のみが必要です。例えば、ドライバー出力に直列抵抗器を配置することは、送信機を伝送線にマッチさせる可能性のある解決策の一つです。受信機では、グラウンドへの並列抵抗器を使用できます(または、差動ペアの場合 - 差動ペアを形成するトレース間に抵抗器)。受信機の終端トポロジに関連するいくつかの例は、Altium Designerで利用可能なSignal Integrityツールから取られた図1に示されています。 図1: Altium Designer シグナルインテグリティツールで利用可能な終端トポロジー デジタルシステムにおける信号反射の例 この章では、50Ωシステムに基づいている反射波形との信号マッチング例について議論します - ラジオ周波数設計に共通のシステムですが、このセクションで提示される関係は、他のインピーダンスプロファイルを使用するデジタルシステムや、差動ペアによって信号が送信される場合にも適用されます 記事を読む
シグナル・インテグリティ記事 4 Altium Designer 24に基づくシグナル・インテグリティの原則 1 min Blog シミュレーションエンジニア シミュレーションエンジニア シミュレーションエンジニア 高速および信号完全性への導入 デジタルシステムは、現代の電子機器の基本的な領域の一つです。高効率プロセッサーやFPGA、高速ADCコンバーターとDSPやFPGAを使用する広帯域データ取得システムなど、デジタルシステムの進歩は、さまざまな集積回路やモジュール間の相互接続を含むPCBを特に、電子設計に異なるアプローチを要求します。このアプローチは、現代の高速電子機器で使用される信号の種類に関連しています。 RS232やI2Cのような基本的でよく知られたインターフェースは、データスループットが秒間数百キロビットに限定されていますが、PCIeやUSB3.0のようなインターフェースを介して高速システムやモジュール間の相互接続は、秒間数ギガビット以上のデータレートを持つことがあります(これが高速システムや高速設計という用語の由来です)。 さらに、現代の高データレート相互接続のほとんどは、少数の信号線のみを使用するシリアル信号を使用します。そのようなシリアル線の一つが図1に示されています。いくつかの標準では複数の線が必要であり、ほとんどの場合、これらの線は差動ペアとして作られます。そのような標準の良い例はPCIeやJESD204です。 図1:シリアル高データレートリンク;送信機、受信機、および伝送路のインピーダンスマッチングは信号完全性にとって基本的です 高速設計の原則は、信号データレートとこの信号によって占められる帯域幅との間に直接的な関係があるため、無線周波数設計に似ています - データレートが高いほど、そのような信号によって占められる帯域幅も広くなります。また、高速信号の立ち上がり時間と立ち下がり時間は、しばしば1ns以下で、スイッチング周波数は数GHzを超えることがよくあります。このような信号は、SPI、I2C、RS232などの低速規格で使用される信号とは異なる方法でPCBを伝播します。信号の帯域幅を念頭に置き、送信機(例:ADCのJESD204Bインターフェース)から受信機(例:FPGAの入力ピン)まで、データリンクの忠実度が維持されるように、PCBを正しく設計するためには、重要な注意が必要です。最も一般的には、LVDS(低電圧差動信号)規格が、高データレートモジュールやシステムを相互接続するため、または高速信号の標準化された仕様(例:電圧変動、論理レベル、インピーダンスなど)を提供するために使用されます。 高速信号の性質は、PCB上で伝送されるリンクと信号の高忠実度を保証するために、PCBと回路図の異なる設計ツールを必要とします(設計に費やされる時間の削減とともに)。信号の高忠実度は、信号の品質特性に関連するもので、信号整合性と呼ばれ、PCB/SCHの開発中だけでなく、専用ツールを使用したラボでの信号測定によっても検証できる伝送信号の多数のパラメータから構成されます。 Altium Designerは、高速プロジェクトに関連するすべての活動をサポートし、例えば以下のような多数の機能を提供することにより、信号整合性の制御手段を提供します: 回路図とPCBでの差動ペアの定義の可能性; 長さマッチングを伴うPCBエディタでの差動ペアのルーティング; 差動および単線信号線の制御インピーダンストラックの定義; 差動ペア内およびバス内での信号線の長さ調整; 信号整合性と高速のためのシミュレーションツールとDRCチェック; 消散因子、誘電率定数、銅の粗さを含むインピーダンスプロファイルでのPCBスタックアップの定義の可能性; コンポーネントの伝播遅延の定義の可能性 など。 これらの機能は、信号完全性に関連する設計エラーを軽減し、設計フェーズでの柔軟性を提供し、プロトタイピングコストを削減し、製品の市場への納品を加速させるのに役立ちます。 記事を読む