Skip to main content
Mobile menu
Discover
Develop
Agile
リソース&サポート
リソース&サポート
ラーニングハブ
サポートセンター
マニュアル
Webセミナー
Altium Community
フォーラム
バグの報告
アイディア
大学・高専
学生ラボ
教育者センター
Altium Education カリキュラム
Search Open
Search
Search Close
サインイン
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
ホーム
Altiumのエキスパート
筆者について
最新の記事
コンポーネントを簡単に作成して生産性を向上
1 min
Webinars
コンポーネントの作成は厄介な作業ですが、設計において不可欠な作業です。しかし、コンポーネントの作成に何時間も費やさなくても、もっと簡単に作成する手段を選ぶこともできます。Altium Designer®には、コンポーネントの各種の要素であるシンボル、フットプリント、3Dモデルのパラメーターデータ、サプライチェーンの情報などを作成するため、いくつかのツールが用意されています。 このビデオでは、次のトピックについて解説します: 回路図シンボルの作成 PCBフットプリントの作成 3Dモデルの追加 Workspaceへのコンポーネントのリリース Manufacturers Part Searchパネルを使用して、既存のシンボルとフットプリントの検索、置き換えを行う方法 今すぐ Altium Designerの無償評価版をリクエストして、世界最高のPCB設計ソリューションをお試しください!ご不明な点などございましたら、 お問い合わせフォームにご入力ください。
時計
高速設計とは何か?
1 min
Webinars
高速問題の主な原因は、高いクロック周波数ではなく、コンポーネント信号の急速な立ち上がり時間と立ち下がり時間にあります。速いエッジレートでは、受信側で反射が発生することがあり、ボードのルーティングが密集している場合、クロストークが問題になる可能性があります。このウェビナーでは、高速PCBをより効率的かつ効果的に設計するために使用できる知識を深め、新しいスキルを開発します。インピーダンス、反射、クロストーク、エッジレートなどの重要な概念をカバーします!実践的な要素も取り上げられるため、学んだことをすぐに実践に移すことができます。 ここでは、得られることが期待されるいくつかの重要なポイントを紹介します: いつ信号を「高速」として扱うべきか? 反射、クロストーク、インピーダンスが設計決定にどのように影響するか? シグナルインテグリティ分析の実行方法。 クロストーク分析の実行方法。
時計
41:16
高速設計とは?
46 min
Webinars
高速設計で発生する問題の主な原因は、クロック周波数の高さではなく、コンポーネント信号の立ち上がりと立ち下がり時間の速さにあると言われています。エッジレートが速いと、レシーバー側で反射が発生したり、基板の配線が密集しているとクロストークが問題になったりします。 このビデオでは、高速設計をより効率的かつ効果的に設計するための知識を磨き、新しいスキルを身につけることができます。インピーダンス、反射、クロストーク、エッジレートなどの重要な概念を取り上げます。また、実践的な要素を網羅しているので、学んだことをすぐに実践することができます。 このビデオでは、次のトピックについて解説します: 信号はいつ「高速」扱いになるのか? 反射、クロストーク、インピーダンスは設計の決定にどのような影響を与えるのか? シグナルインテグリティ解析の実行方法 クロストーク解析を行う方法 今すぐ Altium Designerの無償評価版をリクエストして、世界最高のPCB設計ソリューションをお試しください!ご不明な点などございましたら、 お問い合わせフォームにご入力ください。
時計
マルチチャンネルのレイアウト複製とルームで領域ごとのルールを設定
1 min
Webinars
ルールを事前に作成して基板の特定の領域に適用すると、設計時に非常に便利です。例えば、BGAの領域に配線する際に自動的に配線をネックダウンさせたり、Z軸に背の高いコンポーネントを特定の領域に限定したりすることができます。 また、マルチチャンネルデザインの部品配置や配線の複製にも使用できます。 このビデオでは、次のトピックについて解説します: ネットクラスの定義 ルームの作成 領域別のルール適用 回路図の整理 今すぐ Altium Designerの無償評価版をリクエストして、世界最高のPCB設計ソリューションをお試しください!ご不明な点などございましたら、 お問い合わせフォームにご入力ください。
時計
Situsトポロジカルルータとその効果的な利用方法
1 min
Blog
プリント基板の設計では大半の時間を配線作業に費やし、その作業時間に占める割合は60%以上ともいわれています。この配線に要する時間を短縮するため、基板設計ツールのAltium Designerには、高性能なSitusオートルータが備えられています。 このオートルータは、全自動で配線を行うものですが、良質な配線結を得るには使いこなしが必要です。そこで今回は、このSitusオートルータの概要と、効果的に利用するための方法を探ってみました。 配線を全自動で行うSitusオートルータ オートルータは配線を自動化するツールとして登場して以来、さまざまなアルゴリズムの開発によって改良されてきました。まず、その進化の経緯を紹介します。 ・ 初期のオートルータ 層ごとに決められた、縦と横への直角配線のみ。既設の配線にブロックされた場合には新たなパスを探すが、パスが見つからなければ配線をあきらめる。 ・リップアップ配線 既存の配線にブロックされた場合、それを引きはがしてルートを確保する。 ・ シェープベース(オフグリッド)配線 隣接するオブジェクトの外形との間で、適切なクリアランスを保ちながら配線を行う。グリッドに拘束されないため、配線密度が上がる。 ・ 45° の斜め配線 縦と横の直角配線だけでなく、45°の斜め方向にも配線。 ノード間を最短距離で結ぶ事ができ、ビアも削減できる。交差点に対角に設置された横断歩道のように、無駄のないルートが形成される。 このように、自動配線は進化してきました。Altium DesignerのSitusオートルータは、これらの配線機能に加え、独自のトポロジカルマッピングアルゴリズムによる、高度な配線パス探索能力を備えています。そして、この高度な配線機能は、デザインルールとストラテジによる管理下で実行されます。
記事を読む
ガーバー編集に戸惑わないために
1 min
Blog
基板設計CADツールのAltium Designerは、CAMエディタを備えており、ガーバーデータを読み込み、リバースエンジニアリング機能を利用してPCBデータに変換する事ができます。 これにより、PCBデータが無い場合でもアートワークデータを利用して、既存のデザインを再利用する事ができます。しかし、ガーバーをPCBデータに変換し、それを再度、ガーバー出力するという手続きにはそれなりの手間がかかります。このため、ちょっとした修正であればPCBエディタを使わずCAMエディタで修正してしまった方が手っ取り早い場合があります。 ところが、CAMエディタの操作性は、慣れ親しんだPCBとは大きく異なるため、早々に編集をあきらめてしまうという場合も多いようです。 そこで今回は、このガーバー編集を戸惑わずに行えるよう、その要点をまとめてみました。 ガーバーはインテリジェントな情報を待たないベクトルデータ ガーバーデータは、単に点と線の座標が羅列されたベクトルデータです。しかも、各層のアートワークデータが別々に保存されており、各層のスタックアップ情報も存在しません。もちろん、パッドスタックや部品情報もありません。インテリジェントなPCBデータとは全く異なり、層ごとに作業を行わなくてはなりませんので修正には手間がかかります。しかし、修正を終えたガーバーデータは、CAM出力工程を経ずそのまま基板の製造工程に投入できますので、手間取らずに基板を手配する事ができます。 ガーバーの種類と方言 ガーバーには標準ガーバーと拡張ガーバーがあります。標準ガーバーは、すでに拡張ガーバーに置き換えられており、新たに設計した基板の製作に使われる事はありません。しかし、保管されている過去のデータには、標準ガーバー形式のものが残っている場合があります。このため、アパーチャなど、今でも古い標準ガーバーを取扱う為の知識が必要です。 また、標準ガーバーではフォーマットの解釈の違いによる方言が存在し、アートワークイメージが正しく再現されない場合がよくあります。 その典型的な例として、円弧表現があげられます。円弧表現には「全円」(G75)と「1/4円」(G74)があります。日本ではデフォルトとして「全円」が用いられている場合が多く、欧米では「1/4円」が使われるのが一般的です。いずれの場合でも、ファイル中に全円を示す”G75” や1/4円を示す”G74”が明示されていれば自動的に正しく切り替えらわれますが、このコマンドが省略されている場合があります。このような場合には、国産ツールで作成されたガーバーデータをAltium DesignerのCAMエディタ等で読み込むと、円弧が正しく再現されません。この不具合は、ガーバーファイルの冒頭に”G75”を追加する事によって、解消されます。拡張ガーバーでは方言が減っていますが、まだ、この問題は完全には解消されていないようです。 なお、ガーバーフォーマットについては、 Altium Designerがサポートするガーバーとその後継フォーマットでも解説されていますのでご覧ください。 CAMエディタの機能と操作性 Altium DesignerのCAMエディタは、ガーバーデータを単独で編集するだけでなく、基板を構成する一連のガーバーデータをスタックアップする事ができ、各層のランドを連結して、パッドスタックに変換する事が可能です。 また、このような進化の一方で操作性は、ガーバーエディタで伝統的に用いられてきた旧来のものから変わっていませんので、日ごろ使っているPCB
記事を読む
Pagination
First page
« First
Previous page
‹ Previous
ページ
7
現在のページ
8
ページ
9
ページ
10
ページ
11
ページ
12
Next page
Next ›
Last page
Last »