Skip to main content
Mobile menu
PCB設計
Altium Designer
世界中の設計者に支持される回路・基板設計ソフトウェア
CircuitStudio
エントリーレベルでプロ仕様のPCB設計ツール
CircuitMaker
個人、オープンソース、非営利団体のための無料PCB設計ツール
Altiumに乗り換える理由
他のPCB設計ツールからAltiumに乗り換える理由と方法を確認する
ソリューション
Altium Enterprise ソリューション
デジタルトランスフォメーションへの 最終ステップ
電子部品プラットフォーム
世界中の技術者が利用するOctopart
Altium 365
リソース&サポート
製品情報
無償評価版
ダウンロード
拡張機能
リソース&サポート
Renesas / Altium CEO Letter To Customers
全てのリソース
サポートセンター
マニュアル
Webセミナー
コミュニティ
フォーラム
バグの報告
アイディア
教育
専門家育成トレーニング 資格取得プログラム
Comprehensive Career Training for Altium Software and Design Tools
大学・高専
Academic Licenses, Training, Sponsorships and Certificates for Higher Education
オンラインストア
Search Open
Search
Search Close
サインイン
高速設計
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
無料トライアル
高速PCB設計
高速設計の課題に対処するための簡単なソリューション
ソリューションを探す
高速PCB設計
PCB設計における差動ペアの間隔とクロストーク
差動信号によるクロストークが信号に問題を引き起こしていますか?ここでは、差動信号がどのようにクロストークを発生させるか、そしてどのようにして差動信号の整合性を保証できるかについて説明します。
記事を読む
PCBトレースのインダクタンス計算:どれくらい広いのが過ぎるのか?
トレースを正しくサイズ設定し、PCBトレースのインダクタンスが十分に低いことを確認する方法は次のとおりです。
記事を読む
PCBの種類
PCB設計を開始すると、アプリケーションごとに専用の異なる設計要件があることに気づくでしょう。ワークフローの生産性を損なうことなく、全ての設計要件を満たすには、どのような設計要件にも適応するPCB設計ソフトウェアが必要です。統合設計インターフェースを備えたPCB設計ソフトウェアを使用すれば、アプリケーション固有の設計要件を定義し、満たすことも簡単です。 Altium Designer あらゆるアプリケーションに合わせて固有のPCBを設計できるPCB設計ソフトウェアパッケージ。 完全に電気を使わない生活をしている人以外は、常に多数のPCBに囲まれていると言っても過言ではありません。これらのPCBは、どれも固有のアプリケーションに合わせてカスタマイズされており、デバイス間で交換できるPCBは1つとしてありません。PCB設計には、暗黙的にカスタマイズ性が求められるため、設計者と技術者には、あらゆるアプリケーションに対応するPCBを構築できる設計ソフトウェアが必要です。
記事を読む
PCB制作者はAltium Designer以上を探す必要はありません
PCB設計ソフトウェアに関して言えば、最高のソフトウェアパッケージは部分的に販売されることはありません。PCB設計業界が求める最新かつ最高のツールを含む統合ソフトウェアソリューションが必要です。PCB設計が初めてであろうと、何十年ものビジネスに携わっているとしても、Altium Designerはあらゆる用途の高品質なPCBを生産するためのツールを提供します。 ALTIUM DESIGNER 設計プロセス全体に必要なツールを含む統合PCB設計ソフトウェアパッケージ シンプルな回路基板を作成できるプログラムはたくさんあります。しかし、最高のPCBを構築したい場合、最高のツールが必要です。今では、Altium Designerで統一されたPCB設計環境で作業できます。機能が分離されたプログラム間で設計を移動させる日々は過ぎ去りました。 Altium Designerを使用すると、必要な重要な機能をすべて含む単一のインターフェース内で操作できます。業界標準の設計、シミュレーション、CAD
記事を読む
多層PCBにおける直交トレース配線の長所と短所
直交トレースルーティングの使用を制限する要因は何ですか?ほとんどの設計の質問と同様に、それは信号速度、スタックアップ、そしてPCBレイアウト内の配置に依存します。専門家であるZachariah Petersonによる最新のPCB設計ブログを読んで、さらに詳しく学びましょう。
記事を読む
DDR5 PCBレイアウト、ルーティング、およびシグナルインテグリティガイドライン
DDR5規格のリリースが2020年7月に発表されました。これは、提案された規格に従う最初のRAMモジュールの開発が発表されてから約18ヶ月後のことです。この規格では、ピーク速度が5200 MT/秒/ピンを超えることが可能であり(DDR4の3200 MT/秒/ピンと比較して)、JEDECで評価された速度は最大6400 MT/秒/ピン、チャネル帯域幅は最大300 GB/秒まで増加します。 この新世代のメモリは、8GB、16GB、32GBの容量で、技術がより商業化されるにつれて、以前の世代よりも需要が上回ると予想されます。 より高速な速度、より低い供給電圧、そしてより高いチャネル損失は、DDR5のPCBレイアウトと設計において厳格なマージンと許容誤差を生み出しますが、DDR5チャネルの信号整合性は一般的な信号整合性メトリクスを用いて評価することができます。この分野には取り上げるべきことがたくさんありますが、この記事では、DDR5における信号整合性を確保するための重要なDDR5
記事を読む
高速配線のための高度なPCBガイドライン
これらの高速配線ガイドラインを使用して、高度なPCB用のこの先進的なボードを作成できます 新しい設計はますます高速化しており、PCIe 5.0は32 Gb/sに達し、PAM4は信号の整合性と速度を限界まで押し上げています。適切なインターコネクト設計は、高度なデバイスの低ノイズマージン、完璧な電力安定性要件などを考慮し、信号が適切に受信されることを確実にする必要があります。 高度なデバイスが低い信号レベルで動作するため、高速配線ガイドラインは、インターコネクト全体でのインピーダンス不連続による信号損失、歪み、反射を防ぐことに焦点を当てています。特に多レベル信号を使用する場合、超高速信号には、ここで提示されたすべての高速設計ガイドラインを真剣に考慮し、実践に移す必要があります。 重要な高速配線ガイドライン 高速がサブナノ秒領域に達する場合、特に新しいPCIe世代で、高速ネットワーキング機器をサポートするために、どの設計者もいくつかの基本的な高速PCB配線ガイドラインを心に留めておくべきです
記事を読む
高速信号のための遅延調整:知っておくべきこと
PCBにおける長さが一致したライン オシロスコープで2つの信号の読み取りを見ると、信号トレース間の長さ/タイミングの不一致が下流のゲートを不適切にトリガーすることがどのようにして起こるかがわかります。マスタークロック信号の伝達時間と、異なるコンピュータインターフェースで送受信されるデータの往復時間を見ると、状況はさらに悪化します。SDRAMは、スレーブデバイスにクロックを配置し、取得したデータと一緒にクロック信号を送信することで、この問題をうまく解決しています。一方、他のインターフェース(USB 3.0、SATAなど)は、データから直接クロック信号を抽出します。 私たちの残りの部分にとって、複数の並列インターコネクト、差動ペア内のトレース、そしてクロック信号の間での遅延調整は、データが正しい場所に正しいタイミングで到着することを保証します。長さ調整スキームを適用するには、単なる長さではなく、異なる信号/インターフェース標準での信号遅延時間を扱う必要があります
記事を読む
PCB内の信号歪み:原因と解決策
高速信号の長さ合わせは、すべて同期に関するものです... 信号の歪みは、信号の整合性や回路分析に関する多くの議論でしばしば触れられるだけのものです。より多くのネットワーク製品が高速で動作し、複雑な変調方式を使用するようになると、信号の歪みがビットエラー率に寄与する深刻な問題となることがわかります。歪みの源は、電気的な相互接続でのデータレートの速度向上を妨げる主要なボトルネックの一つとして挙げられています。 同じ問題は、特に10GHz台の周波数で動作するアナログ信号においても見られます。RF/ワイヤレス領域の設計者は、設計、テスト、測定中にこれらの信号の歪み源を理解する必要があります。 線形対非線形の信号歪み 信号の歪みのすべての源は、線形または非線形として分類することができます。それらは調和波の生成という点で異なります。非線形歪みの源は、信号が源を通過する際に調和波を生成するのに対し、線形信号歪みの源は調和波を生成しません。歪みの両方の源は
記事を読む
高速PCB設計においては、グラウンドプレーンのギャップを横切ってはいけません
電子機器やPCBのフォーラムをよく閲覧していますが、同じ質問が何度も何度もされています。なぜグラウンドプレーンの割れ目を越えてトレースを引いてはいけないのか?この質問は、ハイスピードPCB設計にちょうど足を踏み入れたばかりのプロのデザイナーからメーカーまで、誰もが尋ねます。プロの信号完全性エンジニアにとって、答えは明らかでしょう。 長年のPCBレイアウトエンジニアであろうと、たまにデザインする人であろうと、この質問への答えを理解することは役立ちます。答えは常に絶対的な表現で枠付けられます。PCB設計の質問に絶対的な用語で答えることはあまり好きではありませんが、この場合は答えが明確です:グラウンドプレーンの隙間を越えて信号をルーティングしてはいけません。さらに詳しく掘り下げて、なぜグラウンドプレーンの隙間を越えてトレースを引いてはいけないのか理解しましょう。 グラウンドプレーンの隙間:低速および高速設計 この質問に答えるには、DC、低速、高速での信号の振る舞いを考慮する必要があります
記事を読む
回路設計における過渡信号解析のためのツール
適切なシミュレータを使用すれば、これらの回路で過渡信号解析を行うことができます。 私はまだ最初の微分方程式のクラスを覚えています。最初に議論されたトピックの一つが、多くの異なる物理システムで発生する減衰振動回路と過渡信号応答でした。PCB内のインターコネクトや電源レールでの過渡応答は、ビットエラー、タイミングジッター、および他の信号整合性の問題の原因となります。過渡信号解析を行うことで、完璧な回路を設計する道のりでどの設計ステップを踏むべきかを決定できます。 単純な回路での過渡信号解析は、手作業で調べて処理することができ、時間の関数として過渡応答をプロットすることができます。より複雑な回路は、手作業で分析するのが難しい場合があります。代わりに、シミュレータを使用して回路設計中に時間領域の過渡信号解析を行うことができます。適切な設計ソフトウェアを使用すれば、コーディングスキルも必要ありません。 回路設計における過渡現象の定義 正式には、過渡現象は
記事を読む
ダンピングと反射の転送における直列終端抵抗
伝送線路を含む基板では、トレース、ソース、および負荷インピーダンスのマッチングが重要です。これらの条件を達成するために、単終端伝送線路に直列終端抵抗を使用する設計がいくつか見られるかもしれません。これを行う理由は、信号を遅らせるため、またはドライバーの出力インピーダンスを設定するためであり、誰に尋ねるかによって異なります。 驚くかもしれませんが、終端用の直列抵抗の配置は時々誤解されます。生じる疑問のいくつかは: 直列抵抗を手動で配置する必要があるのはいつですか? 目標インピーダンスに伝送線路を設計するだけでよい場合はいつですか? 短い伝送線路と長い伝送線路では何をすべきですか? 直列抵抗を使用した場合の信号整合性において、負荷容量とグラウンドバウンスはどのような役割を果たしますか? 単終端線路と差動線路の間に違いはありますか? シグナリング標準にインピーダンス要件がない場合(例:SPIやI2C)にはどうすればよいでしょうか この記事では、高速GPIOやシリアルバスの観点から
記事を読む
高速PCB設計:一体どれほど速いのか?
以前のブログで何度か指摘されているように、現在、「高速PCB」は私たちの業界でほぼ至る所に存在しています。そして、引用されているように、エンド製品や実装に関係なく、IC技術が組み込まれているという事実により、すべてのPCBは高速であると常に言われています。数年前、重要なのはコンポーネントのエッジレート、より具体的には、コンポーネントのエッジとボード間の相互接続であると言い始めました。実際、それが私たちのビジネス名であるSpeeding Edgeに至った経緯です。これは、「bleeding edge」と「高速エッジレート」という用語の混成語であり、PCB上のコンポーネント相互接続によって示されます。 「高速」という用語の進化とそれが年々どのように変化してきたかを再考する価値があります。この記事では、高速PCBの歴史、PCBデバイスを高速と言うときに何を本当に意味するのか、そして高速PCB設計プロセスに不適切に適用されるいくつかの経験則について議論します
記事を読む
パワープレイ - 電力供給システムの成功設計
業界全体を通じて、最も問題を引き起こし続ける設計要素は電力供給システム(PDS)です。そして、コンサルティング会社として、過去数年間にわたり私たちが解決に呼び出された問題の大半は、常にPDSの問題に集中していました。以前のブログで述べたガードトレースとその非効率性についての話と同様に、EMIの問題を解決するために呼び出されるたびに、私たちは常にPDSの修正に取り組んできました。 この記事では、PDS設計の課題がどのようにして生じ、それらを軽減するために使用された方法について議論します。この記事の第2部では、超低電力実装のためのPDS設計について取り上げます。 少しの歴史と多くの問題 まず、基本から:すべてのPDSには、電力が流れる場所と直列にインダクタンス(Lpとして表される)と抵抗(Rpとして表される)があります。低電流では、抵抗は問題になりません。低周波数では、インダクタンスも問題になりません。周波数を上げ始めると、インダクタンスは劣化の主要な原因となります。 では
記事を読む
細心の配慮が必要な基板の領域
はじめに 現在、FPGAやマイクロプロセッサーなどの高度で多岐にわたるさまざまな半導体デバイスの格納には、一般的にボールグリッドアレイ(BGA)のデバイスパッケージが利用されています。チップ製造の技術的な進歩に足並みを揃えるため、埋め込み型設計向けのBGAパッケージはこの何年かで大きく進展しました。このパッケージは、標準的なBGAとマイクロBGAに分類できます。現在の技術では出口配線が原因となり、複数のI/O可用性に対する要求によって、経験の豊富なPCB設計者にさえ多くの課題がもたらされています。 そのなかでも、製造の失敗といった問題を引き起こすことのない適切な出口配線を確保しなければなりません。パッドやビアのサイズ、I/Oピンの数、BGAのファンアウトに必要なレイヤーの数、トレース幅のスペースなど、適切なファンアウト配線を行うには、いくつかの応用が必要になります。ま た、基板のレイヤー数をいくつにするかという問題もありますが、これは簡単に決められるものではありません
記事を読む
高速設計とxSignal
高速設計は、電気エンジニアが行う可能性がある業務の中でも最も難しいものの一つです。高速信号の応答はきわめて多くの要因から影響を受けます。一般的に、高速設計とはシステムクロック周波数の機能のことであると誤解されていますが、これは間違いであり、高速性を決定するのは、 立ち上がり時間、PCBスタックアップによるインピーダンス低減、トレース幅、終端処理です。 エンジニアとPCB設計者にとって、スイッチング速度が速いということは次の2つのことを意味します。 シグナルインテグリティの問題 反射、クロストークなど。 シグナルインテグリティの目標は、配線インピーダンスの低減、終端処理、PCBスタックアップなどにより達成されます。 タイミングに関する制約 多数の信号がほぼ同じタイミングで送信先のピンに到達するようにすること 信号経路の配線長さを揃えること 最も一般的なものの一つになったDDRx-SDRAMを含む多くのアプリケーションにおいて、タイミングインテグリティは重要です。現在、この種の設計にはDDR
記事を読む
PCIeレイアウトと配線のガイドライン
子供の頃、コンピューターの筐体を開き、マザーボードに搭載された複雑なカードスロット、チップ、その他電子部品を見ると、製作者がどうやってこの部品すべてを正しく配置できたのか、不思議に思っていました。後にコンピューター・アーキテクチャーと周辺機器のPCB設計について学ぶと、私はPCB設計者が優れた電子機器を構築するために注いでいる労力に驚嘆しました。 最新のGPU、USB、オーディオ、およびネットワークカードはすべて同じ相互接続規格である、PCI Expressの背面で実行できます。PCIeデバイスの高速PCB設計に慣れていない場合は、PCI-SIG (Peripheral Component Interconnect Special Interest Group) から標準ドキュメントを購入しない限り、このトピックに関する情報が少し断片的になります。幸いなことに、基本仕様は実用的な設計ルールに分割できるため
記事を読む
Pagination
First page
« First
Previous page
‹‹
ページ
1
ページ
2
ページ
3
ページ
4
現在のページ
5
ページ
6
Next page
Next ›
他のコンテンツを表示する