Skip to main content
Mobile menu
PCB設計
Altium Designer
世界中の設計者に支持される回路・基板設計ソフトウェア
CircuitStudio
エントリーレベルでプロ仕様のPCB設計ツール
CircuitMaker
個人、オープンソース、非営利団体のための無料PCB設計ツール
Altiumに乗り換える理由
他のPCB設計ツールからAltiumに乗り換える理由と方法を確認する
ソリューション
Altium Enterprise ソリューション
デジタルトランスフォメーションへの 最終ステップ
電子部品プラットフォーム
世界中の技術者が利用するOctopart
Altium 365
リソース&サポート
製品情報
無償評価版
ダウンロード
拡張機能
リソース&サポート
Renesas / Altium CEO Letter To Customers
全てのリソース
サポートセンター
マニュアル
Webセミナー
コミュニティ
フォーラム
バグの報告
アイディア
教育
専門家育成トレーニング 資格取得プログラム
Comprehensive Career Training for Altium Software and Design Tools
大学・高専
Academic Licenses, Training, Sponsorships and Certificates for Higher Education
オンラインストア
Search Open
Search
Search Close
サインイン
PCB設計
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
無料トライアル
Easy, Powerful, Modern
The world’s most trusted PCB design system.
Learn More
PCB設計
高齢者の独り暮らしを支える新たなIoTテクノロジー
私の祖母はこの7年間、両親の家と同じ通り沿いに住んでいます。ここに越してきたのは、彼女のアルツハイマー病が発覚し、独り暮らしはもうできないのではないかと両親が感じた後のことです。しかし、テクノロジーのおかげで、祖母は半ば独立した生活を送ることができています。私の母は監視カメラを使って、祖母が安全に満足して過ごしていることを確認し、必要があればいつでも彼女のもとを訪れます。この方法では祖母が介護施設に入らずに済みますし、両親も過度な負担なしで祖母の世話をすることができます。高齢者とその子供の多くはそれぞれが独立した暮らしを望みますが、健康面と安全面を考えると、そうもいかないことが少なくありません。新しいスマート センサーアレイとモノのインターネット(IoT)を使用したスマート ホームシステムを利用すると、お年寄りが可能な限り独立した暮らしを営むことができるようになります。 高齢者の独り暮らし 自宅を離れたいと考える高齢者はほとんどおらず
記事を読む
AltiumLive 2017: 年次PCB設計サミット
このPCB設計カンファレンスは、その全体が、設計者の知識と実践の向上を目的としたトレーニングコンテンツに特化しています。このようなPCB設計カンファレンスはほとんど見られないため、Altiumは完全に設計者のための、専門的なPCB設計者の主導による、新しいPCBカンファレンスを作り上げることを決意しました。 この秋、 AltiumLive 2017: 年次PCB設計サミットが、北米および欧州で開催されます。弊社は2日間にわたって、他では見られないようなPCB設計カンファレンスを主催します。Lee Ritchey、Happy Holden、NXPのDan Beekerなど、業界の有名人が講演を行います。業界の象徴的な企業の熟練した設計者から学ぶこともできます。そして、おそらく最高なのは、同僚や同業のAltium Designerユーザーから、どのようにして革新的な設計手法や実践方法を発見したかを聞き、自分の設計業務を次の段階に発展させるために役立てられることでしょう。更に
記事を読む
卓越した次世代のPCB設計者: Nicole Pacino
San Diego PCBの創設者Mike Creedenと、娘Nicole Pacino Judy Warner: Nicole、あなたが基板の設計を始めたのは何歳のときでしたか? Nicole Pacino: 私はとても若いときから設計を始めました。たぶん11歳だったと思います。私の父、Mike Creedenはこの業界の人間で、私はいつも父を見ていたため当然、父が何をしているのかいつも興味を持っていました。ある日、父は私をコンピューターの前に座らせ、作業をゲームとして私に見せてくれました。とても具体的に精密なルールの、非常に難しいゲームで、私はとても楽しめました。そこで、私は仕事をしているのだと気付くよりも前に、この作業を開始したわけです。 私が公式に仕事として設計を始めたのは、20歳のときです。この頃、私は物事のより技術的な側面の学習を開始し、単に誰かから指示を受けるのでなく、自分が何を、どうして行うのかを理解するようになりました。 数年後には
記事を読む
高電圧設計向けのPCBレイアウトについて計画する方法
以前、都市プランナーの友人とトレイルランニングをしていたことがあります。私が疲れてやる気を失くしてしまう前に少しでも長く走らせようと企んだ彼女は、街の区画整理や建設に関することについてあれこれ聞かせてくれました。地元の政治の裏話に興味をそそられた私は、走る辛さを忘れたものです。 友人は賛成しないでしょうが、高電圧PCB向けのレイアウトは複雑な都市計画にいくつかの類似点があります。高電圧PCBでは通常のPCB設計に関する検討事項に加え、最終製品の最高性能を確保し、寿命を迎えるまで保護するために、基板全体で電界強度を制御、最適化できるレイアウトが必要になります。 高電圧領域の分離 都市計画で区画地域を指定し、土地の用途を制限するのと同じように、設計者は高電圧回路をグループ化し、基板の他の部分への影響を最小限にしなければなりません。高電圧と低電圧の領域を分離することで、基板でのアーク放電のリスクを低減できます。 高電圧の領域を物理的に分離する方法の1つは、周辺にinsertを追加することです
記事を読む
PLCと組み込みシステムとの比較: ユニット単価が高くてもPLCを選択すべき場合
評判の高い、豪華なレストランで夕食を取ったことがありますか? そのときは、かなりの金額を支払ったことでしょう。しかし、素晴らしい夕食を希望し、それを楽しめたなら、その金額は十分に価値のあるものだったはずです。これに対して、平均的な地元のレストランで、サンドイッチが予想額より20ドル高かったら、馬鹿げた話だと思うのが当然です。このような場合は、そのお金で料理教室に通い、自分で料理を作った方がずっとマシというものです。 私は電子機器設計者として、プログラマブル ロジックコントローラー(PLC)やローカライズされた組み込みシステムで同様の経験があります。PLCを、ローカライズされた組み込みシステムに置き換えることで、コストを大幅に削減できます。しかし、豪華な夕食が支払い金額に見合う価値があるように、より高価な選択肢であるPLCの方が適切な選択となる状況もあります。 PLCとその応用 プログラマブル ロジックコントローラー は産業用に特化したコンピューターです。入力信号(デジタルまたはアナログ
記事を読む
1つのGND接続によって100台のMP3プレイヤーに問題が発生した理由
テクノロジーは偉大なもので、確かに人生の特定の部分を楽にしてくれました。しかし、子育て、コーディング、電子機器の設計、そして時にはこのような記事を書いていると、最高のアプリを使用しても、日々のストレスを低減できなくなることがあります。例えば、私は今朝塩と砂糖を間違えて、子供の大好きなお粥に混ぜてしまいました。私の小さなミスにより、私の5歳の子供はGordon Ramseyと張り合えるくらい騒ぎ立ててしまいました。 同様に、ごく小さなミスにより、優れた設計が台無しになることもあります。非常に運が良ければ、そのミスは子供の癇癪に10分間付き合う程度の問題で済むかもしれません。残念ながら、PCB設計の世界では、これは数百もの欠陥のある設計を処理することになるのが普通です。私は5年前に、まさにこのような例を経験しました。小さな設計ミスのせいで、きっかり100台のカスタマイズされたMP3プレイヤーが、左チャンネルの音声に障害を持つことになってしまったのです。このミスは大きな苦痛であったため
記事を読む
Google Glass Enterprise Edition、業務用市場に参入
編集クレジット: Peppinuzzo / Shutterstock.com 誰よりも真っ先に何かをやる人はどのような気持ちになるのか、想像したことがありますか? それが険しい山頂でも月面でも、人類未踏の場所に立つことは偉大な感情を伴うのでしょう。ただし、初めての試みには数多くのリスクが付きまといます。どんなことを計画するのも自由ですが、水平線のかなたに何があるのかを目にできる方法は、実際に行ってみることだけです。長きにわたってテクノロジー業界の開拓者であり続けるGoogle(現在はAlphabet)が発売したGoogle Glassは、ヘッドアップディスプレイ(HUD)に世間の注目を集めた大胆な試みでした。初期のGoogle Glassは、開発者の予想どおりにはうまくいきませんでしたが、将来的な利用に一定の道を開きました。今回Enterprise Editionとして帰ってたGoogle Glassは、業務用としてのHUD利用を目指しています
記事を読む
リアルタイムクロック設計でベストプラクティスに従うべき理由
目覚まし時計が午前3時15分で止まっていたせいで、学校に遅刻した経験はありませんか? 高校のとき、目覚まし時計が鳴る音はあまり心地よいものではなかったものの、母が呼ぶ大声ほどには耳障りではありませんでした。時計が止まったのは電池切れのせいだとわかっていましたが、もっと注意していれば、電池が少なくなるにつれて時計の動きが遅くなことに気付いていたでしょう。そうすれば電池が切れる前に交換して、母の金切り声を聞かずに済んだでしょうに。すっかり大人になった今では、学生時代の目覚まし時計ではなく、 リアルタイムクロック (RTC)の設計に取り組んでいます。一般に、RTCは、設定された基準に対して現在の時間を刻み続ける集積回路(IC)です。RTCは通常、メインシステムの電源が切られた後も動作を続けるように設計されており、最小限の電力しか消費しません。仮にシステムのRTCが故障した場合、その影響は母親のお説教よりもずっと悪いものになります
記事を読む
半導体ファイバーは光ファイバーケーブル伝送ラインに置き換わるのか
インターネットは、奇妙で魅力にあふれた場所です。私が子供の頃はダイヤルアップ インターネットの末期で、チャットルームが全盛の頃でした。今では、私はたまにインターネットでいくつかのオンラインゲームを楽しんでいますが、このようなものは当時は不可能でした。私の電話ルーターや銅線によるネットワークでは、画像をロードするための帯域幅を確保するのがやっとでした。今日のネットワークは、非常に高速な光ファイバーにアップグレードされました。これらの通信システムは確かに昔の銅線によるものより優れていますが、依然としていくつかの欠点もあります。このため研究者たちは、シリカの代わりに半導体を使用する新しい種類の光ファイバーを探求してきました。この新しい種類のケーブルは、広域ネットワークとPCBの両方において、信号伝送に役立つ可能性があります。 光ファイバー 多くの人々は、インターネットのことを、雲の中かどこかに設置されていて接続可能な「何か」と考えていますが
記事を読む
低電力ワイヤレス通信用のRFテクノロジー: Ambient Backscatter
私は家族の再会が好きですが、私の拡大家族は40人もいるため、これはかなりの大事になります。カードで遊んだり、水泳をしたり、または夕食のテーブルなどどこでも、常に誰かが冗談を言ったり、話を始めたりします。実際に、ほとんどの人々が話を始めるため、皆に聞いてもらうには叫ばなくてはならないこともあります。電磁スペクトルの中での通信も、このように困難な場合があります。デバイスは多くの場合、データを伝送するために、空中に自分の信号を「叫ぶ」必要があります。この伝送には電子機器とエネルギーが必要で、一部のデバイスでは容積やバッテリー駆動時間の関係で実現できません。ワシントン大学の研究グループは、Ambient Backscatterによる通信を使用して、これらの問題点の解決を試みています。この方法により、データの伝送に必要な回路と電力が何桁も減少する可能性があります。Ambient Backscatterがワイヤレスネットワークへ実際に使用可能なら
記事を読む
ウェアラブル デバイス: 機能的でお洒落なテクノロジー
両親が若い頃の古い写真を見て、「どうしてこんな見苦しい服を着ていたんだろう?」と思うことがありますか? 私が特に気になるのは大きな眼鏡です。ファッションは重要です。流行は変化にするせよ、そのことは昔から変わっていません。モノのインターネット(IoT)やウェアラブル電子機器において、美観は多くの場合に軽視されています。設計者は機能と外観を同時に開発するのではなく、機能を先に決めて、外観とフォームファクターは後回しにする傾向があります。製品を売るためには、ファッションも重要であることを理解する必要があります。外観と機能を適切に両立させた、3つのデバイスを紹介しましょう。 上品なギーク 映画やテレビ番組を見れば、ギークは以前としてあまり外見が良くないことに気づくでしょう。Fonzieは、年をとってもBig Bang TheoryのSheldonよりもお洒落です。電子機器を購入する人々はオタクのように見られることを望まず、多くのウェアラブルはこの点で失敗しています。 IoTは 我々が予測したほど
記事を読む
PCB設計におけるDRC: 設計の失敗の防止
私は長年にわたって小さなボートを所有しており、水上での趣味に使用していましたが、いくつかの重要なルールに従う必要がありました。ルールの1つは、ボートを水に浮かべる前に、排水プラグを必ず取り付けるということです。新しいボートをが沈んでしまい、回収するために泳ぐくらいなら、ただ泳ぐため水に入る方がはるかに安くつきます。 ルールは自分たちを保護するためのものだということは、誰でも知っています。しかし、不注意または意図的に、ルールが無視されることもあります。回路基板の設計にも、従うべきルールがあります。さいわい、今日のPCB設計ソフトウェアにはデザインルール チェック(DRC)が組み込まれています。設計者はこれらを使用するだけで十分です。 ルールは設計の失敗を防止するためのものです。 基板のDRC 回路基板の設計のサイズや複雑性にかかわらず、デザインルールのチェックは行う必要があります。特定の設計は非常に単純なため、DRCに時間を費やす価値はないと主張する人もいます。しかし、最も単純な設計でも
記事を読む
高電圧PCB設計についての検討事項
私は以前、高電圧の応用は電力工学だけに必要なものだと考えていました。発電所や変電所で働く気はまったくなかったので、高電圧PCBの設計について学ぶことを免れていたわけです。ところが、空間の応用に興味を持った時点で、その考えが間違っていたことに気付きました。そして、怠惰な自分と向き合わざるを得なくなってしまったのです。高電圧の応用は、製造や発電所から医療や航空宇宙まで、ほぼすべての業界に存在しています。 高電圧の応用に向けたPCBの設計では、設計や製造の全工程でさまざまな内容を検討しなければなりません。基板は過酷な状況で稼働することが条件となっており、部品や材料の寿命に大きな影響を受けます。これに挑戦しようという意気込みがある場合は、レイアウトの作成を開始する前に、いくつかの検討事項を確認しておきましょう。 動作周波数についての検討事項 製品の動作周波数は、 ESD と同様に高電圧設計に影響を及ぼし、 ノイズ管理 は基板に影響を及ぼします。これは、高周波が低い電圧でアーク放電を成し
記事を読む
不十分なデータ管理に起因する開発後の問題の評価
どのような設計者やチーム、企業にとっても、設計をリリースまで漕ぎつけたときは安堵のため息をつける瞬間でしょう。しかしながら、この瞬間が常に喜びに満ちたものになるとは限りません。プロジェクトの完了には、次の2種類があります。a)ドキュメント化プロセスに何の不備もなく無事設計を完了しており、リリースの準備を開始できるケース。b)設計は問題なく完了しているが、データ管理プロセスに小さな(または大きな)誤りがあるため、修正と製造の後戻りが必要であり、製品リリースを遅延せざるを得ないケース。データ管理プロセスに何らかの不備がある場合、開発後はすべての局面を通じて後悔し続けることになりかねません。 開発後の懸念と後戻りの可能性 開発後の局面で懸念が持ち上がるのは当然のことであり、特にデータ管理についての不確定要素がある場合はなおさらです。ECADデータ資産の管理が十分でないと、ドキュメント化の方法が時代遅れになる傾向にあります。その場合、データ管理システムでエラーが非常に発生しやすくなり
記事を読む
PCB回路設計で微細な短絡の発生を防止する方法
デートで出掛けたディナーのパスタに髪の毛が入っていたということほど、悲惨な話があるでしょうか。口に入れた後に気付いたとすればなおのことでしょう。この悲劇を避ける方法は2つあります。ひとつは、料理を口に運ぶ前に髪の毛が入っていないかどうかを徹底的に確かめること。もうひとつは、料理に髪の毛が入ってしまう危険を完全になくすこと(ただし、この場合は別のレストランを選ぶ必要があるかもしれません)。PCBの設計では、2~3本の髪の毛がそれほど大きな損害をもたらすことはありませんが、QCではどんなに微細な短絡も大問題になります。短絡を見つけるのには時間がかかるうえ、その修正コストはPCB実装よりも高額になることがあります。レストランの食事に髪の毛が入っていては困るように、設計でも短絡が発生するのを回避しなければなりません。とはいえ、人間はミスをするものです。短絡を完全には回避できないかもしれませんが、成功事例を実践して危険を最小限にすることは可能なはずです。 微細な短絡とは何か?どのように発生するのか
記事を読む
高電圧PCB設計: 沿面距離と空間距離
高電圧の応用には、通常のPCBよりも厳しい設計パラメータが必要になる 大学生のとき、私は電気化学エッチングの実験を行いました。その経験をずっと履歴書に記載していたのは、高電圧源や危険な化学品を使った実験について、面接官が必ず話を聞きたがったからです。ところが、危険な職場環境をまったく意に介さない人間が求められる仕事には就きたくないと後になって気付きました。 それがきっかけで、私は高電圧設計について学び始めました。高電圧の製品に要求される基準には圧倒されましたが、それと同時に安心もしました。私たちが作成した高電圧製品を大学院生たちが使うのを止めることはできないものの、基板がきちんと保護されているのが分かれば心配する必要はありません。 安全の確保にあたって、特定のスペースルールが必要になる場合とは 高電圧PCB設計に必要となる厳しいスペースルールは、すべてのPCB設計に適用されるわけではありません。一般的には、製品の通常の作動電圧が30VACまたは60VDC以上になると、基板設計に
記事を読む
モノのインターネットのハードウェア プラットフォームのフレキシブル化
子供の頃に熱中したり執着したりしたものを覚えていますか? 私が若かった頃、誰もがポケモンと、子供でも触れる電子機器に熱中していました。これら2つの熱狂はやがて、 たまごっち という最終的な流行に結びつきました。これは大ヒットして、携帯電子機器の人気と、小さく非現実的な動物に対しての子供たちの愛情を生み出しました。最近では、PCBにおける2つの熱狂、すわなちフレキシブル電子回路とモノのインターネット(IoT)が結合しました。自作用開発基板のようなハードウェア プラットフォームはIoTの誕生に役立ち、フレキシブル ハイブリッドエレクトロニクス(FHE)はそのIoTを成熟へ導くために役立っています。技術者は、Arduinoのような大きなブランドと互換性のあるフレキシブルな基板や周辺機器の設計を開始しています。IoT開発者が必要とするコンポーネントを搭載した、使いやすい基板を設計することで、この動向に加わることができます。 フレキシブルなハードウェア プラットフォームの利点
記事を読む
Pagination
First page
« First
Previous page
‹‹
ページ
41
現在のページ
42
ページ
43
ページ
44
ページ
45
ページ
46
Next page
››
Last page
Last »
他のコンテンツを表示する