PCB設計者

PCB設計者のためのリソースと情報をご覧ください。

Filter
見つかりました
Sort by
役割
ソフトウェア
コンテンツタイプ
適用
フィルターをクリア
要件文書による電子部品の調達 要件ドキュメントを用いた電子部品調達の改善 1 min Blog PCB設計者 購買・調達マネージャー 製造技術者 PCB設計者 PCB設計者 購買・調達マネージャー 購買・調達マネージャー 製造技術者 製造技術者 電子機器の製造において、プリント基板のための部品調達は、プロジェクトの成功に大きく影響を与える重要な作業です。 要件文書アプリケーションを使用することは、このプロセスを効率化する最も効果的な方法の一つです。これらのツールを使用することで、PCBデザイナーは、PCB設計ファイル内の特定の部品に添付できる詳細な設計要件を作成できます。この記事では、そのようなアプリケーションを使用する利点と、電子部品調達を強化する方法について探ります。 PCB設計における要件文書の役割 要件文書は、PCBプロジェクトのための設計図として機能し、部品が満たすべき仕様や基準を概説します。この文書には、電気的特性、物理的寸法、環境耐性、業界基準への準拠など、幅広い基準が含まれることがあります。 要件を明確に定義することで、デザイナーは選択した部品が最終製品内で正しく機能することを保証できます。 要件文書アプリケーションの主な利点 精度と一貫性の向上 要件文書化アプリケーションを使用する主な利点の一つは、提供される精度と一貫性の向上です。 PCB設計ファイル内の個々のコンポーネントに特定の要件を添付することにより、設計者はすべてのチームメンバーが同じ情報を使用していることを確認できます。これにより、誤解や誤解から生じる可能性のあるエラーや不一致のリスクが軽減されます。 さらに、これらのアプリケーションは、複雑なプロジェクトに取り組んでいる大規模なチームにとって重要な、すべての設計要件のための単一の情報源を維持するのに役立ちます。この集中化されたアプローチは、要件への更新や変更がプロジェクト全体に即座に反映されることを保証し、コストのかかる間違いにつながる可能性のある不一致を防ぎます。さらに、これらのアプリケーション内で標準化されたテンプレートやチェックリストを使用することで、各コンポーネントに対して考慮され、文書化されるべきすべての必要な基準が確実に満たされることにより、一貫性をさらに高めることができます。 コンポーネント選択の合理化 要件文書化アプリケーションは、コンポーネント選択プロセスを大幅に合理化することができます。コンポーネントが満たすべき基準を明確に定義することで、これらのツールは設計者がサプライヤーから適切なコンポーネントを特定するのを容易にします。これにより、設計者は選択肢を迅速に絞り込み、特定のニーズを満たすコンポーネントに焦点を当てることができ、貴重な時間とリソースを節約できます。 さらに、これらのアプリケーションは、コンポーネントデータベースやサプライヤーカタログと統合することが多く、設計者がアプリケーション内で直接、要件に合致するコンポーネントを検索できるようになります。この統合により、リアルタイムの在庫情報や価格情報を提供でき、設計者が迅速に情報に基づいた決定を下すことを可能にします。さらに、一部のアプリケーションでは、高度なフィルタリングやソート機能を提供し、事前に定義された基準に基づいて最も適したコンポーネントを強調表示することで、選択プロセスをさらに迅速化できます。 サプライヤーとのコミュニケーションの改善 成功したコンポーネント調達には、サプライヤーとの効果的なコミュニケーションが不可欠です。要件文書化アプリケーションは、必要なコンポーネントの明確で詳細な仕様を提供することで、これを容易にします。サプライヤーはこの情報を使用して正確な見積もりを提供し、要求された基準を満たすコンポーネントを提供していることを保証できます。これにより、遅延を避け、プロジェクトがスケジュール通りに進むことを確実にするのに役立ちます。 詳細な仕様を提供するだけでなく、これらのアプリケーションは、包括的な見積もり依頼(RFQ)文書の作成もサポートできます。これらのRFQには、関連するすべての要件と基準が含まれており、サプライヤーが必要なものを完全に理解できるようにします。さらに、一部のアプリケーションでは、設計者とサプライヤーがプラットフォーム内で直接コミュニケーションを取ることができるコラボレーション機能を提供し、情報の交換を合理化し、誤解の可能性を減らします。 自動要件チェック 多くの要件文書化アプリケーションは、自動要件チェックを提供しており、これによりコンポーネント調達プロセスの効率をさらに向上させることができます。これらのツールは、コンポーネントが指定された要件を満たしているかを自動的に検証し、手動でのチェックの必要性を減らし、エラーのリスクを最小限に抑えることができます。これは、手動でのチェックが時間がかかり、間違いが発生しやすい複雑な要件を持つ大規模プロジェクトに特に有用です。 自動要件チェックには、業界標準や規制要件に対する検証も含まれることがあり、選択されたすべてのコンポーネントが必要なガイドラインに準拠していることを保証します。この機能は、プロジェクトの遅延や追加コストにつながる可能性のある非遵守問題のリスクを大幅に減らすことができます。さらに、自動チェックは設計プロセス全体を通じて継続的に実行され、設計が進化するにつれてすべてのコンポーネントが引き続き準拠していることを継続的に保証します。 手動レビューとマーキング 記事を読む
AIビジョンとKria KV260ビジョンAIスターターキット AIビジョンとKria KV260ビジョンAIスターターキット 2 min Altium Designer Projects PCB設計者 ハードウェア製造業スタートアップ企業 / エレクトロニクスプロトタイパー システムエンジニア/アーキテクト +1 PCB設計者 PCB設計者 ハードウェア製造業スタートアップ企業 / エレクトロニクスプロトタイパー ハードウェア製造業スタートアップ企業 / エレクトロニクスプロトタイパー システムエンジニア/アーキテクト システムエンジニア/アーキテクト ソフトウェアエンジニア ソフトウェアエンジニア Kria KV260 Vision AI スターターキットの始め方では、AMD Xilinxから提供されているKria KV260 Vision AI スターターキットを開封し、遊んでみました。このボードは、Ubuntuの完全なディストリビューションを実行できるほど強力なFPGAとARMプロセッサを提供します。この記事では、Raspberry Piカメラを使用してSmartCamアプリケーションを構築し、実行します。このアプリケーションは、リアルタイムで顔を検出し、コンピューターモニターにその様子を表示することができます。 このチュートリアルを書いた理由 このチュートリアルは、AMD Xilinxの方々がまとめた 元のチュートリアルに続くものです。このチュートリアルの多くが、彼らのものと非常に似ている(同じである)ことに気づくでしょう。このチュートリアルを初めて見たとき、圧倒される感じがしました。私はFPGA設計にかなり詳しい背景を持っていますが、彼らのチュートリアルを一つ一つ丁寧に進めることは時には難しく、少し気が重くなることがあります。もう少し直感的で、簡単にフォローできるものを探していました。他の人が書き直したチュートリアルをじっくりと読んだ後、私が見つけたものにはあまり満足できませんでした。それゆえ、自分自身で書くことにしました。 もし詳細な情報を求めているなら、元のチュートリアルを確認することを強くお勧めします。いくつかのステップは非常に明確ではありませんが、このチュートリアルではそれらを乗り越える(あるいは回避する)試みをしています。最も重要なことは、この記事を書いている時点で、サンプルのSmartCamアプリケーションは最新のファームウェアでは動作しないようでした。 フォークしたリポジトリでは、デモをスムーズに起動できるように自動化スクリプト(さらには必要な最終フラッシュファイルまで)を作成しました。このチュートリアルを手に入れたことで、できるだけ早くハードウェアターゲットでのAIに飛び込み、デモを成功させた後に私が感じた「わお」の瞬間を体験できることを願っています。 ハードウェアの前提条件 もちろん、AMD Xilinxの 記事を読む
ADのWB Altium Designerにおけるワイヤーボンディング 1 min Blog PCB設計者 PCB設計者 PCB設計者 はじめに ワイヤーボンディング技術は年々進化しており、その使用例や応用分野も広がっています。デバイスがよりコンパクトでパワフルになるにつれて、設計者は複雑なインターコネクトを扱うための正確なツールが必要とされ、Altium Designerは、チップ・オン・ボード(COB)設計やキャビティ内のスタックダイ、その他の高性能アプリケーションでのワイヤーボンディングを効率化する機能を提供しています。この記事では、Altium Designerの高度なワイヤーボンディング機能と、それが信頼性をどのように保証するかについて探ります。 Altium Designerにおける高度なワイヤーボンディング技術 Altium Designerのワイヤーボンディングツールは、新しい機能の範囲を提供し、PCB設計に高度なボンディング技術を取り入れることを容易にしています。いくつかの注目すべき機能を見てみましょう: キャビティ内のスタックダイ用ワイヤーボンディング:ユーザーは、キャビティ構造内のスタックダイに必要な複雑なインターコネクトを簡単に扱うことができるようになりました。これは3D集積回路としても知られています。レイヤースタックマネージャーのリジッド&フレックスアドバンスドモードを利用することで、ダイ構造とダイパッドを簡単に描画し、異なるスタックアップに配置して3D構造を作成することができます。Altium Designerの3Dビューでのワイヤーボンドの可視化機能により、設計者はワイヤーボンドのループ高さ、長さ、直径、およびパスが設計の電気的および機械的要件に最適化されていることを確認できます。これらの3Dビジュアライゼーションは、高度なコンピューティングおよびモバイルデバイスで使用されるスタックダイ構造の典型的な細ピッチおよび高ピン数を管理する際に重要です。 キャビティ内のスタックダイワイヤーボンディング(3D集積回路) ダイ間ワイヤーボンディング:Altium Designerのワイヤーボンディングツールは、ダイ間ワイヤーボンディングを可能にします。これは、寄生インダクタンスと信号干渉を最小限に抑えるために使用される技術です。複数のダイを中間のフィンガーパッドや銅の流れなしで直接ワイヤーボンドで接続することができ、ループ長を短縮し、高周波および高電力アプリケーションの性能を最適化します。 ダイ間ワイヤーボンディング ダイから銅プールへのワイヤーボンディング:多くのパワーエレクトロニクスや高電流アプリケーションでは、ダイを直接銅プールに接続することが、効果的な熱および電気性能を実現するために不可欠です。Altium Designerのワイヤーボンディングツールは、PCB上のダイと銅プールエリアとの間の正確なワイヤーボンディングを可能にすることでこれをサポートします。この方法は、熱の放散と電流処理能力が重要なパワーマネジメントモジュールなどの高電力設計に特に有用です。大きな銅プールに直接ボンドワイヤーを接続することを可能にすることで、設計者は電気および熱性能が最適化され、追加のインターコネクトやビアの必要性を減らすことができます。 銅プール上の複数のワイヤーボンド 同じダイパッドのための複数のワイヤーボンド:Altium Designerのワイヤーボンディングツールは、電流運搬能力を高め、インピーダンスを減少させるために、同じダイパッドからの複数のワイヤーボンドもサポートします。この技術は、ダイを通じてより高い電流が流れるパワーエレクトロニクスや高性能アプリケーションにおいて特に重要であり、電気負荷を分散させるために追加のワイヤーボンドが必要になります。複数のワイヤーボンドは、個々のワイヤーボンドにかかるストレスを減少させることで機械的信頼性も向上させ、高ストレス環境での熱および電気性能を強化します。 パッドの整列と向き:成功したワイヤーボンディングプロセスには、適切なパッドの整列と向きが不可欠です。Altium 記事を読む
主要なコンポーネントディストリビュータ 7つの主要なコンポーネントディストリビューターが電子イノベーションを推進 1 min Newsletters PCB設計者 購買・調達マネージャー 製造技術者 PCB設計者 PCB設計者 購買・調達マネージャー 購買・調達マネージャー 製造技術者 製造技術者 想像してみてください:ある設計エンジニアが、画期的な医療機器のプロトタイプを完成させるために夜遅くまで働いています。ふとした閃きで、設計の課題を解決するために特定のマイクロコントローラーが急速に必要になることに気づきます。彼女はどうするでしょうか?誰に頼るでしょうか?もちろん、電子部品のディストリビューターです。 今日では数千もの部品ディストリビューターが存在し、多くの地域専門のサプライヤーも含まれています。この記事では、世界をリードする7つの主要なディストリビューターを見ていきます。これらの企業は、技術産業を支える基本的な構成要素の大部分を供給しています。 一線を画す7つの主要ディストリビューター 群衆から際立つためには、充実した倉庫だけでは不十分です。トップディストリビューターは、技術的な能力、物流の専門知識、顧客中心のサービスを組み合わせた、多面的なパートナーであり、欠かせない味方へと進化しています。彼らは、スピード、信頼性、適応性をもって、非常にダイナミックなグローバル市場のニーズに合わせて運営を微調整しています。それでは、そのうちの7つを詳しく見ていきましょう: Arrow Electronics: コロラド州センテニアルに本社を置くArrowは、世界で最も大きなディストリビューターの一つであり、90カ国にまたがるグローバルネットワークを誇っています。同社の秘密兵器は何か?Arrowの インテリジェントサプライチェーンサービスは、AIと分析を活用して、製造業者の生産ラインがスムーズに稼働し続けるよう支援します。 Avnet: アリゾナ州フェニックスに拠点を置くAvnetは、古き良き経験と新しい考え方を組み合わせています。彼らの設計およびサプライチェーンサービスは、エンドツーエンドのサポートを求める企業に魅力的です。Amazon Web Services (AWS)とのパートナーシップが、Avnetの IoTConnectプラットフォームの背後にあり、OEMのIoT実装を加速するための、事前設定され管理されたAWS IoTおよびクラウドサービスを含んでいます。 Digi-Key Electronics: ミネソタ州シーフリバーフォールズに拠点を置くDigi-Keyは、部品が急速に必要な人々にとって人気の選択肢です。その膨大な在庫( Octopartにリストされた1100万以上の部品)と迅速な配送は、数え切れないほどのプロジェクトを遅延から救ってきました。Digi-Keyは、顧客満足へのコミットメントを認められ、Littelfuseから2023年のグローバルハイサービスディストリビューター・オブ・ザ・イヤー賞を受賞しました。 Future 記事を読む
WB 記事 1 ワイヤーボンディング:現代の応用、技術トレンド、およびコストに関する考慮事項 1 min Blog PCB設計者 PCB設計者 PCB設計者 はじめに ワイヤーボンディングは、半導体ダイをパッケージリードフレームや回路基板に接続するための主要な方法として長らく支配的であり、特にチップ・オン・ボード(COB)技術では、ダイが直接PCB上に搭載される場合に多く用いられています。ワイヤーボンディングによるCOBは、その信頼性と大量生産におけるコスト効率の高さから、電卓や初期のデジタルデバイスなどの消費電子製品で人気を博しました。 時間が経つにつれて、ワイヤーボンディングCOBは、小型化と高性能化の要求に応えるために進化し、パワーLED、イメージセンサー、パワーエレクトロニクス、高性能コンピューティングなどのアプリケーションで重要な技術となりました。今日では、ワイヤーボンディングはマイクロエレクトロニクス業界における第一レベルの接続の75-80%を占め、コンパクトで高性能な設計において信頼性の高い接続を提供しています。 電子機器におけるワイヤーボンディングの現代的な応用 ワイヤーボンディングは、幅広い現代のアプリケーションで使用されており、柔軟性、信頼性、コスト効率を提供します。主な分野には以下のようなものがあります: 3D集積回路(IC):3D ICでは、複数の半導体ダイが垂直に積み重ねられており、これらの層を接続するためにワイヤーボンディングが不可欠です。デバイスがよりコンパクトになるにつれて、高密度処理能力への需要が高まり、細かいピッチと高いピン数を管理するためにワイヤーボンディングが不可欠になっています。この技術は、高性能コンピューティング、先進的なモバイルデバイス、高密度デジタル電子機器にとって重要です。 ワイヤーボンドを使用した3D積層ダイ パワーエレクトロニクスとワイドバンドギャップ半導体:電気自動車や再生可能エネルギーシステムなどの高電力アプリケーションで使用されるシリコンカーバイド(SiC)や窒化ガリウム(GaN)などのワイドバンドギャップ半導体のパッケージングには、ワイヤーボンディングが不可欠です。これらの半導体は高電圧と高温で動作し、より高い電流負荷を処理し、効率的な電力管理を確保するために、しばしば太いゲージの銅ワイヤーボンディングが使用されます。 ワイヤーボンディングされたパワーモジュール(画像出典:Electronics Weekly, “Powering UP”, 2022年4月 光電子工学とイメージセンサー:イメージセンサーの解像度が高くなると、必要な接続数が劇的に増加し、細いワイヤーボンディングが不可欠になります。これらの高性能、高密度設計は、先進的な消費者向け電子機器、医療診断、セキュリティシステムにとって重要です。 CMOSイメージセンサーCOBとワイヤーボンド【画像出典:アルバータ大学、Sensors 2011に掲載】 チップ・オン・ボード(COB)LED: COB技術はLED設計で広く使用されており、より高いルーメン密度と改善された熱管理を提供します。ワイヤーボンディングにより、効率的な熱放散を持つコンパクトなLEDアレイが可能になり、自動車、産業、消費者向けアプリケーションでより明るく長持ちする照明ソリューションにつながります。 COB 記事を読む
EMIシリーズ 第3部 EMI制御をマスターするPCB設計:EMC設計のためのスタックアップの選び方 1 min Blog PCB設計者 PCB設計者 PCB設計者 電磁両立性(EMC)の面で優れた性能を発揮するPCBを設計する際に習得する最も重要な概念の一つは、PCBのレイヤースタックアップの選択です。 図1 - Altium Designerのレイヤースタックマネージャーツール これは、電磁場をPCB設計内で適切に保持することと密接に関連しているため、最も重要な側面の一つとなります。 この「PCB設計におけるEMI制御の習得」シリーズの第3記事では、これらの概念をさらに探求し、他の重要なEMCの概念についても見ていきます。 信号が回路内で伝播するためには、完全な電流ループを形成するために2つの導体が必要です。一方の導体が信号を運び、もう一方が復帰経路を提供し、電流が流れ、信号が効果的に伝送されることを保証します。導体の一方を 信号導体と呼び、もう一方を信号復帰および 参照導体と呼びます。復帰参照導体という名前は、その仕事が信号の参照(またはゼロボルト)だけでなく、信号電流が発生源に戻るための最小インピーダンスの経路を提供する必要があるためです。最小インピーダンスの経路を実現するために、トレースではなく平面を選択し、この平面は信号のインピーダンス不連続を作り出す可能性のある分割、切断、またはその他のセグメンテーションを持たないべきです。 この基本的な概念から、信号を持つ各層には、復帰および参照経路を提供する第二の導体、復帰参照平面が必要であることがわかります。このシンプルなルールに従うことで、隣接する復帰参照平面(RRP)と各信号層をマッチングすることによって、スタックアップの設計方法を決定できます。 以下は、電磁干渉を最小限に抑えるためのスタックアップの例です。 2層スタックアップの例 2層スタックアップでは、1層を信号と電力トレースに専用し、2層目をソリッドなリターン参照平面とする構成が可能です。 図2 - Altium DesignerのLayer Stack Visualizerツールを使用した2層スタックアップの例 記事を読む