Skip to main content
Mobile menu
Discover
Develop
Agile
リソース&サポート
リソース&サポート
ラーニングハブ
サポートセンター
マニュアル
Webセミナー
Altium Community
フォーラム
バグの報告
アイディア
Search Open
Search
Search Close
サインイン
PCB設計者
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
ホーム
PCB設計者
PCB設計者
PCB設計者のためのリソースと情報をご覧ください。
Learn How Altium Supports PCB Designers
Overview
All Content
Filter
見つかりました
Sort by
最新
人気順
タイトル(昇順)
タイトル(降順)
役割
ECADライブラリ管理者
電気技術者
技術マネージャー
ITマネージャー
機械エンジニア
PCB設計者
購買・調達マネージャー
ソフトウェアエンジニア
ソフトウェア
Altium Designer
Altium 365
Assembly Assistant
BOM Portal
Configurable Workflows
GovCloud
Jira Integration
MCAD CoDesigner
Octopart
Requirements & Systems Portal
SiliconExpert
コンテンツタイプ
ガイドブック
ウェビナー
ポッドキャスト
ホワイトペーパー
適用
EMEA
APAC
Americas
ANZ
フレキシブル&プリンテッドエレクトロニクス:従来のワイヤーハーネスをどのように補完するか
1 min
Blog
PCB設計者
フレキシブルおよびプリントエレクトロニクスはイノベーションを促進しますが、電力、耐久性、信頼性にはワイヤーハーネスが不可欠です。それらがどのように連携して機能するかを発見しましょう。
記事を読む
自動化とロボティクスがワイヤーハーネス組立てにおいて果たす役割
1 min
Blog
PCB設計者
製造技術者
自動化がロボティクス、AIテスト、デジタルツインを用いてワイヤーハーネス組立を変革しています。製造業者が効率と精度をどのように向上させているかを学びましょう。
記事を読む
PCB設計エンジニアが外部チームと設計ファイルを安全に共有する方法
1 min
Blog
PCB設計者
外部チームとPCB設計ファイルを安全に共有する方法。ベストプラクティス、メール/ファイルホスティングのリスク、およびクラウドベースのソリューションが設計データのセキュリティをどのようにサポートするかを学びます。
記事を読む
電気自動車と電子機器の時代におけるワイヤーハーネスの未来
1 min
Blog
PCB設計者
電気技術者
購買・調達マネージャー
EVおよび電子機器におけるワイヤーハーネスの未来を探求—より軽く、賢く、効率的な設計が接続性、電力、製造を形作っています。
記事を読む
Octopart Research + Altium Designer = RSPを使用した強力なワークフロー
1 min
Newsletters
PCB設計者
購買・調達マネージャー
OctopartとAltium DesignerでPCB設計を効率化しましょう。コンポーネントの調査、在庫確認、およびドキュメント作成を簡素化して、シームレスで効率的なワークフローを実現します。
記事を読む
その部品を選んだ理由を文書で探し回るのをやめましょう
1 min
Newsletters
PCB設計者
購買・調達マネージャー
過去の設計選択を探し回るのはもう終わりにしましょう!エンジニアリングで時間を節約し、意思決定疲労を避けるために、コンポーネント選択と要件を追跡する方法を発見してください。
記事を読む
PCB設計におけるEMI制御の習得:PDNのためのデカップリング戦略
1 min
Blog
PCB設計者
PCB設計におけるEMI制御をマスターするシリーズの第5回目へようこそ。この記事では、電力分配戦略についてさらに深く掘り下げ、PCBプロジェクトにおける電磁干渉(EMI)性能を向上させるための最適化方法について議論します。 図1 - Altium Designer®でのデカップリング戦略の例 デジタルプリント基板上でEMIを制御し、信号整合性を向上させる上での重要な要素は、効果的なデカップリング戦略を実装することです。これらのアプローチは、基板上の集積回路(IC)にクリーンで安定したエネルギー供給を保証します。 これを達成するために、PCB設計者は、高速スイッチングICのエネルギー需要を満たす強力な電力供給ネットワーク(PDN)を作成する必要があります。これにより、電源から適切な電流量をICが受け取ることを保証します。効率的かつタイムリーにエネルギーを供給するPDNを設計することは挑戦的です。これには、損失を減らし、高性能のためのインピーダンスニーズを満たすことが求められます。 データレートと信号速度が増加し続ける中、低インピーダンスのPDN(Power Delivery Network)を設計することがより重要かつ困難になっています。これは、インピーダンスプロファイルが送信される信号の周波数と密接に関連しているためです。これらの要因をバランスさせることは、PCB設計の性能を維持し、EMI(電磁干渉)の問題を最小限に抑えるために不可欠です。効果的なパワーデリバリーネットワーク(PDN)を設計する際には、デカップリングキャパシタの組み込みや、スタックアップ内でのパワープレーンや銅ポリゴンの使用など、いくつかの一般的な技術が使用されます。 しかし、広く受け入れられている方法や神話の中には、実際には効果がないだけでなく、ボードの性能に悪影響を及ぼすものもあります。 アンチレゾナンス 一つの人気のある技術は、10nFから1µFまでの異なるサイズの複数のキャパシタを使用することです。大きなキャパシタが集積回路(IC)にエネルギーを供給し、小さなキャパシタが高周波ノイズをフィルタリングするという考え方です。このアプローチは論理的に思えますが、PDNの全体的なインピーダンスを減らそうとするときに実際には逆効果になることがあります。逆効果になる理由は、実際のキャパシタは理想的に振る舞わず、高周波数で顕著になる寄生効果を持っているためです。 コンデンサは、その共振周波数までのみ容量性インピーダンスを示します。この点を超えると、コンデンサのパッケージ内の寄生成分がインピーダンスに影響を与え始め、コンデンサの振る舞いがより誘導性を帯びるようになります。全体の容量を高め、インピーダンスを低くするために異なるサイズのコンデンサを使用する試みは、重大な課題を提示することがあります。これは、各コンデンサが独自のインピーダンスプロファイルを持ち、その特有の特性によって影響を受けるためです。各コンデンサは異なる共振周波数も持っており、これらのインピーダンスプロファイルが互いに重なる状況につながります。このインピーダンスプロファイルの重なりは、特定の周波数でより高いインピーダンスピークを引き起こします。これらのピークは、コンデンサのさまざまな共振周波数間の相互作用によって発生します。 図2 - アンチレゾナンス — 異なるインピーダンスプロファイルを持つ異なるサイズのコンデンサを並列に配置する効果。出典: fresuelectronics.com
記事を読む
Pagination
First page
« First
Previous page
‹‹
ページ
8
現在のページ
9
ページ
10
ページ
11
ページ
12
ページ
13
Next page
››
Last page
Last »