PCBレイアウト

高品質なPCBレイアウトでは、高密度な配線、低EMI、機械的制約を考慮した部品配置を行います。Altium DesignerでのPCBレイアウトの方法やヒントをライブラリのリソースでご覧ください。

Filter
見つかりました
Sort by
役割
ソフトウェア
コンテンツタイプ
適用
フィルターをクリア
PFC回路設計と電源システムのレイアウト PFC回路設計と電源システムのレイアウト 1 min Thought Leadership 私たちが望むように、PCBへの電力入力が常にクリーンなDCや正弦波信号であるわけではありません。整流器からのDCは出力キャパシタからのリップルを含んでいることがあり、AC信号にはノイズが含まれていたり、完璧な正弦波ではないことがあります。これらの問題を修正する方法はいくつかあり、適切なフィルタ回路を選択するか、入力波を整形してシステム内の負荷に最大の電力出力を生み出すことができます。 AC電源システムを扱っている場合、電源での電流/電力の引き下げを行うか、または負荷への利用可能な電力を増加させるために、電力因数補正(PFC)が必要になることがあります。PFC回路はICとして入手可能ですが、高電圧/高電流システムの要求に対応することはできません。電力因数を1に近づけるために、PCB上に独自のPFC回路設計とレイアウトが必要になります。ここでは、独自のPFC回路を設計しシミュレートする方法と、PFC回路のレイアウトのヒントをいくつか紹介します。 電力因数補正とは何か? 電源の力率は、実際に消費される実効電力と見かけの電力(RMSボルトおよびアンペアで)の比率であり、この数値は0から1の範囲です。ACソースに整流器を接続した 電源回路の典型的なスイッチングレギュレータは、入力電圧がそのピークに近づくと小さなバーストで電流を引き出します。入力線から引き出される電流が正弦波電圧波形から逸脱するほど、力率は小さくなります。力率は基本的に電力効率の別の指標です。 例として、レギュレータが96%効率的であると仮定します。全体の電源の力率が60%の場合、実際の効率は96%x 60%= 57.6%になります。PFC回路設計を使用する目的は、力率をできるだけ1に近づけることです。力率が1に近づくと、実際に消費される実効電力は、理想的なRMS入力電圧および電流を使用して計算する見かけの電力に近づきます。 新しい製品をヨーロッパで販売する予定がある場合、電源にPFCを適用することを確認する必要があります。最も重要な規制はEN61000-3-2で、少なくとも75Wの入力電力を持ち、サービス入口で最大16Aまで引き出す電力システムに適用されます。この規制は、レギュレータの入力で測定された39番目の高調波までの全高調波歪み(THD)にも制限を設けています。これはPFC回路のもう一つの利点を示しています。より大きな電力因数を持つ電源は、DCレギュレータの入力でTHDがほぼゼロになります。 PFC回路設計とトポロジー PFCコンバータは、 ブーストまたはバックトポロジーで実装できます。バックブーストトポロジーもありますが、入力電圧を通常、上げたり下げたりして一定レベルで調整する必要があるため、これほど人気はありません。バックとブーストの2つのバージョンは以下に示されています。これらの回路図が標準的なバックまたはブーストDC-DCコンバータから期待されるものと一致するなら、正解です!全体の回路図は同一ですが、これらの回路のコンポーネント選択が回路によって提供される電力因数の増加に影響を与えます。 PFC回路が一般的なスイッチングレギュレータと何が違うのか?PFC回路設計における重要な点は、適切な動作モードを選択することであり、これにはこの回路で正しいインダクタを選択することが含まれます。インダクタは、MOSFETがオンの間に入力電圧が上昇するにつれてインダクタを通る電流がどれだけ速く増加するかを決定します。MOSFETがオフに切り替えられると、インダクタは逆起電力を提供し、それによってより多くの電流を負荷に向けます。 インダクタのリップル波形は、一般的なスイッチングレギュレータの場合と同様に、インダクタのサイズによって決まります。インダクタが小さいほどリップル波は大きくなります。波形の制御は、MOSFETにPWMまたはPFMパルスを適用することで維持されます。以下に示される3つのPFC回路モードは、インダクタのサイズとMOSFETに適用される変調の種類によって決まります。以下の表は、各モードでの変調と電流特性をまとめたものです。 モード 変調 電流特性 CCM PWM 平均電流が理想的な正弦波電流に近く、リップルが低い、高速SiCショットキーダイオードを使用して効率を向上させる。最高の出力電力に最適。 記事を読む
12V DC 無停電電源装置 12V DC 無停電電源装置 1 min Altium Designer Projects PCB設計者 PCB設計者 PCB設計者 私は、強風や嵐の際に断続的に電力供給が不安定になる田舎の村に住んでいます。そのため、私のコンピューター、サーバー、ネットワーク機器はすべて、比較的低コストの無停電電源装置(UPS)に接続されています。これらはすべて密閉型鉛蓄電池を使用しており、Raspberry PiやインターネットルーターなどのDCデバイスを電源供給する方法としては特に効率的ではありません。なぜなら、入力されるAC(交流)がDC(直流)バッテリーを充電し、その後、インバーターを介してAC電力を生成し、AC-DCコンバーターがDCデバイスに電力を供給するからです。ADSLルーターを全体のAC UPSに頼るのではなく、小型のUPSを作ってみるのも面白いと思いました。 私のADSLルーターは12V/1Aの電源を持っていますが、内部的にはおそらく1.8-3.3vで動作しているにもかかわらずです。このプロジェクトでは、12V 1AのUPSを作成します。いつものように、オープンソースのAltium Designerプロジェクトファイルは GitHubで、MITライセンスの下でライセンスされています。このライセンスは、基本的に設計に対して好きなことをすることを許可します。ライブラリファイルを探している場合、このプロジェクトは私の Open Source Altium Designer Libraryを使用して設計されました。 上記は、 Altium 365 Viewerで読むことになるPCB設計です。これは、設計を表示したりボタンをクリックするだけでダウンロードできる機能を備え、同僚、クライアント、友人と繋がる無料の方法です!設計を数秒でアップロードし、重たいソフトウェアや高性能なコンピューターなしで詳細に深く見るためのインタラクティブな方法を持つことができます。 バッテリー 鉛蓄電池はエネルギーのワット時あたりのコスト効率が非常に高いですが、もう少し現代的でコンパクトで軽量なものを作りたいと思います。私のUPSには、優れたエネルギー密度、放電率、比較的高速な充電能力を提供する18650リチウムポリマーセルを2つ使用します。次のプロジェクトにバッテリーを使用する予定があるなら、OctoPartでの私の記事 プロジェクト用のバッテリー化学を選択するをぜひご覧ください。18650セルは鉛蓄電池と比較してワット時あたりのコストが比較的高いですが、私のUPSには大きな負荷はかかりません。 LG 記事を読む
設計を正しく進めるためのBOM管理 1 min Blog Active BOMがあれば、憶測に頼らずにコンポーネントを選択して、最初から正しい設計を進めることができます。 Altium Designer すべての製造段階で作業をスムーズに進めるためのPCB設計ツール コンポーネントに対するフィードバックをもらわないと、作業を開始できないことにうんざりしていませんか?コンポーネントについての誤った情報や古いデータが原因で、予算に響く土壇場の変更が発生することに疲れていませんか?こうした問題に思い当たりがあるのなら、スケジュールに狂いが出ることに大きな不満を抱えていらっしゃることでしょう。回路図にコンポーネントを配置しながら、リアルタイムの部品情報をサプライヤーから直接入手できるとすればどうでしょう?回路図の作成中に、設計で使用するすべてのコンポーネントの詳細リストがあれば便利だと思いませんか? これらはすでに実現しています。PCB設計ツールからコンポーネントの詳細な最新情報を入手できるのは、Altium DesignerのActive BOMがもたらす利点の1つにすぎません。BOM管理では、入手できる必要な情報がソフトウェアでリアルタイムに更新されるため、購買管理、請求管理、製品(開発)管理、製品ライフサイクル管理がはるかに容易になります。 Active BOM: 設計データで機能するもうひとつのポータル Active BOMは、Altium Designerに含まれる最新ツールの1つです。回路図エディタやPCBレイアウト アプリケーションとともに、設計データでポータルとして機能するこのツールでは、コンポーネントの完全な詳細リストを表示して、含まれるデータを設計で直接使用できます。回路図とレイアウトの両方でコンポーネントを横断選択できるため、設計中だけでなく設計の見直しにも大いに役立ちます。 Active BOMでは部品サプライヤーとのクラウド接続を通じて、部品の最新の価格や在庫状況、技術データを入手できます。これらの機能のほかにも、部品表レポートを直接作成することが可能です。こうした部品管理が生産性の向上にいかに役立つかがわかったら、もうActive BOMを手放せなくなるでしょう。 設計システム全体で活用できるActive 記事を読む
PCB設計および製造のためのASME基準 PCB設計および製造のためのASME基準 1 min Blog ASMEはPCB設計と展開について何を言っているのでしょうか? 実は、製造のための設計中に考慮すべきASMEからの多くの重要な点があります。信頼性を確保するための重要なIPC基準のいくつかはASME基準から派生している一方で、他の文書化および図面基準はASME基準で明示的に指定されています。電気機械システム、自動車産業、または航空宇宙で作業するかどうかにかかわらず、適切な設計ソフトウェアは、これらの基準すべてに準拠したPCBレイアウトと文書を作成するのに役立ちます。 ALTIUM DESIGNER® 最高のツール、自動化された文書化、および生産計画機能を統合した統一されたPCB設計パッケージ。 ASMEは、あらゆる種類の機械製品に対する設計要件を指定する組織です。安全余裕、機械公差、機械図面に関する要件など、多くの事項がASME基準で指定されています。ASME基準やASMEコードのすべての側面に精通していないほとんどの設計者は、PCB設計に関する機械要件を認識していないかもしれません。 電子製品に使用されるプリント基板に関するさまざまなIPC基準を、ほとんどの電子設計者が認識しているべきです。これらの基準は、電子製品の製造可能性と信頼性を確保するために設計されていますが、関連するASME基準はPCB設計の異なる領域の寸法付けと公差により関心があります。 PCB設計に関する重要なASME基準 ASMEは、機械工学者がさまざまな設計の側面を適切に実装することに関心を持っているため、PCBに関するASME基準は、PCB設計のさまざまな側面に関する重要な幾何学的寸法および公差要件を指定しています。これらの重要な要件は、IPC 2615基準にも反映されており、適切な設計ソフトウェアを使用すると、寸法および公差情報をレイアウトおよびドキュメントに直接実装できます。したがって、ASME基準は、たとえばボイラー圧力容器および配管設計をカバーする一方で、それに内蔵されている任意のコンピュータチップもカバーします。コンピュータチップが故障すると、ボイラー圧力容器および配管が非常に危険になる可能性があります。 IPC基準との関係 IPC 2615の下での電子機器に関する重要な基準は、実際にはASME Y14.5Mから派生しています。プリント基板の寸法および公差に関するこれらの基準に準拠するには、超高精度のコンポーネント配置を可能にし、ルーティングおよびビア設計ツールとインターフェースするCADツールが必要です。また、機械図面に直接公差を指定する必要があります。 適切な設計ソフトウェアを使用すれば、PCBに重要な寸法および公差情報を追加するために、設計をコマンドラインベースのCADプログラムにエクスポートする必要はありません。他のPCB設計プログラムでは、プログラム間でデータを移動させる必要があり、同期が取れません。複数の設計プログラムを使用し、設計の異なる部分間で情報を手動で同期させる代わりに、ドキュメンテーション、レイアウト、回路図、部品表を通じて同期を強制する単一の統合設計パッケージが必要です。 ビアと穴のサイズおよび公差は、回路基板に関するIPC基準およびASME基準で取り扱われる領域の一つです。 ビアと穴の公差を指定する方法についてもっと学びましょう。 ASME/IPCの寸法および公差基準は、設計文書および図面にも適用されます。参照指定子の使用にまだ慣れていない場合でも、適切な設計ソフトウェアを使えばすぐに習得できます。 PCB設計ソフトウェアでの参照指定子の取り扱いについてもっと学びましょう。 よく文書化され、設計された回路図は、ボードの基礎を形成し、レイアウトが電子回路図および文書と適切に対応していることを保証します。 記事を読む
複雑な設計で威力を発揮するPCB配線ソフトウェア 1 min Blog 古いPCB配線ツールのせいで、作業が遅れたり、設計が脱線したりするようなことがあってはなりません。優れたPCB配線ソフトウェアを活用すれば、正確な設計を予定どおりに完了できます。 Altium Designer 専門家を対象とする、効果的で使いやすい最新のPCB設計ツール。 これまでは、PCB設計の配線作業に長い時間をかけることができましたが、現在の厳しいスケジュールでは、要求に対応できない配線ツールを使って時間を無駄にしている余裕はありません。ツールに邪魔されることなく、最初から正しく配線を進める必要があります。また、レイアウトツールとスムーズに同期する回路設計ツールを使用すれば、これらのツールを連携させるために無駄な時間を割く必要はありません。配線が終わった後は、すべての設計内容をチェックして、製造図を自動的に作成できる完全なツールがあれば、予定より早く仕事を完了できます。足を引っ張られてしまう旧式の配線ツールに依存するのはやめ、必要な機能がすべて揃っているAltium Designerに目を向けてください。 クラス最高のPCB配線ソフトウェア 配線ツールが最大限に機能するためには、強力なプラットフォームを基盤に構築されていなければなりません。Altium Designerはこの要件を満たしています。業界で30年以上にわたって研究を続け、最良のPCB設計ツールの開発に取り組んできたAltiumは、Altium Designerの中核を成す64ビットのマルチスレッド アーキテクチャーを構築しました。これは、搭載されるすべてのツールの基盤となっています。さまざまなインタラクティブ配線や自動配線のツールを思いのままに活用できるため、どんな問題も解消します。 こうしたツールには、Altium Designerのプレミア機能であるActive Routeが含まれます。このユーザー主導の自動配線システムでは、正確な手動のような配線がオートルーターのスピードで完了します。現在の設計作業では、高速設計に伴うルールや制約に対処しなければなりません。Altium DesignerのxSignalsウィザードでは、複雑なトポロジーの配線ルールを作成できます。PCB設計でのトレース配線ツールでは、Altium Designerに勝る製品が見つからないでしょう。 高速設計の要求に対応する配線ツール Altium Designerには、強力なプラットフォームと高度な配線ツールが用意されているほか、必要な高速配線ルールも作成できます。 64ビットのマルチスレッドシステム 記事を読む
Arduinoシールドは、回路開発のための既製のアドオンです Arduinoシールドは、回路開発のための既製のアドオンです 1 min Blog Arduinoシールドプロジェクトは、市販のプリント基板アセンブリに利用可能な集積回路ブロックです。 ALTIUM DESIGNER プロフェッショナル向けに最も強力で、最新かつ使いやすいPCB設計ツール。 Arduinoは、アイデア開発用の小規模回路を含む市販のプリント基板アセンブリを提供する会社です。各Arduinoは、開発者が他の回路アセンブリとインターフェースするための接続を備えて設計されています。Arduinoシールドプロジェクトは、DIY愛好家向けにArduinoが提供するアクセサリーインターフェースの一部であり、Arduino UnoやArduino Leonardoボード、またはマイクロコントローラーにピンで接続します。事前に設計されたシールドの例としては、Arduinoイーサネットシールドがあり、Arduino Unoシールドテンプレートのカスタマイズのために、プロトシールドのような空白のArduinoシールドとしても提供されます。 Arduinoは自社の設計のPCBAを既製品として提供していますが、回路図やボードレイアウトはウェブ上で容易に入手できます。DIY愛好家がEDA図面スキルの開発を目指している場合、これらの設計は良い出発点となります。回路図やPCBレイアウトは、DIY愛好家が選んだEDAツールでアクセスし、再描画することができます。このようにして、DIY愛好家はスキルセットを成長させます。 Altium Designerは、DIY愛好家や予算が限られている人々に、そのEDAツールの無料トライアルを提供します。このツールセットは、シンボルと配線機能へのアクセスを提供し、アイデアを持つ人々が回路ブロックのキャプチャに挑戦することを可能にします。一度回路図が描かれると、Altiumの無料トライアルは、興味を持つ開発者に仮想的にプリント基板を作成するチャンスを提供します。これにより、自分の工房や地元の製造業者で回路基板を製造するために使用できる図面が生成されます。 Arduino Unoシールドテンプレートは、DIY愛好家のための学習ハードウェアを提供します 電子機器の世界では、多くの企業や人々が回路を作成しています。回路はアイデアとして始まり、ハードウェアの形を取ります。ハードウェアは、コンポーネントと配線の集まりです。ある時点で、その回路の部品はプリント回路基板アセンブリに最も適切に整理されます。効率的に収容されることで、発明者はより多くのアイデアを試すことができます。Arduinoは、このようなことを実現する既製のプリント回路基板アセンブリを提供する会社です。 Altiumのグラフィカル回路エディターで回路図を描く Arduino Unoシールドテンプレートは大衆向けのプリント回路アセンブリです Arduino Shieldsや空のArduino Shieldsを使い始める人々は、プリント回路基板の組み立てからその旅を始めます。偶然にも、最初はDIY愛好家が手描きの回路をソフトウェアでグラフィカルに表現できると気づいたときに、基板への興味が湧きます。Arduino 記事を読む
高電圧SMPS PCBレイアウトで熱とノイズを最小限に抑える 高電圧SMPS PCBレイアウトで熱とノイズを最小限に抑える 1 min Thought Leadership AC-DC変換であれDC-DC変換であれ、スイッチング電源のレイアウトは高電圧設計で一般的であり、慎重に構築する必要があります。このシステムは非常に一般的ですが、スイッチング中の電圧と電流の急激な変化により、簡単にEMI(電磁干渉)を放射する可能性があります。設計者は、ある領域のわずかな変更が診断が困難なEMI問題を引き起こす可能性があるため、既存の設計を新しいシステムに適応させることはほとんどありません。 適切なレイアウト選択と配線を行うことで、SMPSの出力からノイズが重大な問題になるのを防ぐことができます。低電圧コンバータは異なるフォームファクターでICとして購入できますが、高電圧コンバータは専用のボード上で個別のコンポーネントから製造する必要があります。ここでは、コンポーネントを冷却し、システムのノイズ問題を防ぐための重要なSMPS PCBレイアウトのヒントをいくつか紹介します。 SMPS PCBレイアウトのノイズと熱問題 どうしても避けられないことですが、任意のSMPSはトランジスタドライバのスイッチング動作により、中程度の高周波ノイズを発生させます。実際には、AC-DC変換中の全波整流器からの低周波リップルを高周波スイッチングノイズに変換しています。この変換によりより安定したDC出力が得られますが、依然として2つの重要なノイズ源が問題となります: スイッチング素子からの直接的なスイッチングノイズ。 システム内の他の場所での過渡的なノイズ。 SMPSユニットの出力には、伝導ノイズとしても放射ノイズとしてもノイズが現れることがあります。各問題の原因を診断するのは複雑になることがありますが、2種類のノイズを区別することは容易です。SMPS PCBレイアウトにおける他の設計上の課題は、ボード内で発生する熱です。これは、適切なPWM周波数、デューティサイクル、立ち上がり時間を選択することで影響を受けることがありますが、ボードで適切な熱管理戦略を使用する必要があります。これら2つの課題を念頭に置いて、SMPS PCBレイアウトで注意すべき細かな点を見てみましょう。 熱管理 理想的なSMPSはゼロパワーを消散しますが、現実にはこれは起こりません。スイッチングトランジスタ(およびAC-DC変換用の入力トランス)が、熱として大部分の電力を消散します。スイッチング電源トポロジーでは効率が90%を超えることもありますが、電力MOSFETはスイッチング中にかなりの熱を発散することがあります。ここでの一般的な実践は、重要なスイッチングコンポーネントにヒートシンクを設置することです。これらをグラウンドプレーンに接続して 新たなEMIの発生源を防ぐことを確認してください。 高電圧/高電流の電源では、これらのヒートシンクはかなり大きくなることがあります。エンクロージャにファンを取り付けることで、システムの冷却をさらに強化できます。ただし、新たなEMI問題を引き起こさないように、このファンの電源供給に関して ベストプラクティスに従うことを確認してください。 SMPS PCBレイアウトのヒント あなたのPCBスタックアップ レイアウトは熱管理に多少役立ちますが、EMIの感受性に関してはより大きな決定要因です。伝導ノイズは通常、入力回路と出力回路に 記事を読む