Skip to main content
Mobile menu
Discover
Develop
Agile
リソース&サポート
リソース&サポート
ラーニングハブ
サポートセンター
マニュアル
Webセミナー
Search Open
Search
Search Close
サインイン
PCBレイアウト
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
ホーム
PCBレイアウト
PCBレイアウト
高品質なPCBレイアウトでは、高密度な配線、低EMI、機械的制約を考慮した部品配置を行います。Altium DesignerでのPCBレイアウトの方法やヒントをライブラリのリソースでご覧ください。
回路図からPCBレイアウトを作成する方法
PCB Design and Development
Top 5 PCB Design Rules
Altium DesignerでPCBレイアウトをする方法
PCB Layout and Placement Guidelines
PCB Component Placement (Webinar)
Rules-Based Component Placement
Enterprise PCB Layout Capabilities
Design Rules Available for PCB Layout in Altium
Overview
All Content
Filter
見つかりました
Sort by
最新
人気順
タイトル(昇順)
タイトル(降順)
役割
ECADライブラリ管理者
電気技術者
技術マネージャー
機械エンジニア
PCB設計者
ソフトウェア
Altium Designer
Altium 365
Octopart
コンテンツタイプ
ビデオ
ウェビナー
ポッドキャスト
ホワイトペーパー
適用
Americas
EMEA
ANZ
APAC
EMI/EMC設計: AC信号およびDC信号の絶縁によるPCBノイズリダクション
1 min
Blog
AC信号およびDC信号は、動作のために両方を使用するデバイスにとって重要です 高校で、物理の先生がいつもEdisonとTeslaの「電流戦争」について話してくれたものです。当時は、Edisonが直流送電(DC)を好んで使用し、Teslaが交流電力(AC)を好んだ理由など、全く関心がありませんでした。それが、PCBのACシステムとDCシステムの間で起きる「電流戦争」を直接体験するようになって変わりました。今日、多くのPCBはACとDCの両方の回路を使用します。ACとDCがぶつかると、多くの場合電磁妨害(EMI)という形で問題が起きます。幸い、「電流戦争」と同じように事態は治まります。最新のPCBでは、ACとDCの信号は協調的に共存できます。カギは絶縁です。 電磁妨害からの絶縁 AC回路とDC回路の間の干渉を管理する簡単な解決策がいくつかあります。主に、コンポーネントの遮蔽、システムの隔離、専用電源、十分な基礎知識、非橋絡絶縁などです。 遮蔽: ご存知のとおり、EMIを放射する可能性のあるコンポーネントはPCBに多数あります。電源、ICクロック、オシレーターなど、いずれもACコンポーネントと干渉する可能性があります。「ノイズを発する」DCコンポーネントからのEMIを制限する、あるいは影響されるACコンポーネントを保護する方法の1つとして、ノイズの単純な遮蔽があります。遮蔽は基本的に、筐体内の空気を通じて放射されているEMIが遮蔽された回路を妨害しないことを保証します。したがって、保護や制約が必要なものがある場合は、人類が何百年も行ってきたことを行い、金属ボックス内に配置します。マルチレイヤー基板がある場合は、シールドとしてグランドプレーン層を使用することもできます。効果的である一方、遮蔽は基板の重量とコストが増加するので、EMIの低減と他の問題とを注意深く比較検討してください。 基板が単純でも複雑でも、AC/DCの隔離によるメリットはあります 隔離: EdisonとTeslaが同じ部屋にいたら、お互いに聞きたいことが必ずあったはずです。ないとすると、より物理的な妨げによるものでしょう。幸い、この2人は通常離れていたので、ACコンポーネントとDCコンポーネントはそれぞれの導線につながっていたはずです。チップでもトレースでもACシステムとDCシステムをPCB上に相互に離して配置すると、システム間に「クロストーク」がない状態を確保できます。ACとDCのシステム間に物理的な距離をとる十分なスペースが基板上にない場合は、隔離が必要なコンポーネント間のグランドプレーンにギャップを設けることもできます。グランドプレーンのギャップは、プレーンを流れる電流を強制的にギャップの周りに流します。この方法は、戦略的に使用して、反応しやすいシステムの周りに電流を経路変更できます。要するに、配線を交差しないということです。単純な回路では簡単にうまく隔離できますが、より複雑な回路ではかなり難しくなります。ACとDCの隔離のために最善を尽くしてください。ただし、最適な結果を得るのは難しい場合があることを覚えておいてください。 電源: 各AC/DC PCBでは、ACコンポーネントとDCコンポーネントに別々のパワーレールが必要です。DCコンポーネントは、電源からスパイクを引き起こし、電圧過渡になる可能性があります。ACコンポーネントはこの電圧過渡で動作する(あるいは動作しない)場合がある一方で、このとき最高能力で動作することはありません。電圧過渡が極端な場合、ACコンポーネントはエラーを発生するか、完全に動作を停止します。電源を別にすることは不便かもしれませんが、チップが動作しないよりはましです。 接地: ご存知のように、AC/DC回路の接地は複雑な問題です。あまりにも複雑なため、この記事では完全に掘り下げて考えることができません。しかしながら、アドバイスを提供することは可能です。接地グリッドまたはプレーンの電流のリターンパスを確認してください。DC電流は、最小の抵抗性インピーダンスパスに流れる一方で、ACのリターン電流は最小のリアクタンス性インピーダンスパスに流れます。ACのリターン電流では、最小リアクタンス性インピーダンスのパスは常にトレースの下にあります。リターンパスは忘れがちですので注意してください。グランドプレーンをチェックして、電流のリターンパスをトレースしてください。前の「隔離」の推奨事項も適用して、配線が見えない場合も、配線を交差しないようにしましょう。 橋絡(しない): 読者の皆様は、私が提供した(すばらしい)全てのアドバイスに従った場合、2つの適正に隔離されたACシステムとDCシステムを持っているはずです。プレーンにギャップがあり、それらの橋絡を考えているなら、お止めください。この記事全体は、AC/DCの隔離について書いていますので、橋絡を行うと、これまでのアドバイスは全く意味がなくなります。 PCB設計ソフトウェアが、AC信号とDC信号が隔離された基板の設計をサポートします ソフトウェアによりACとDCを隔離する方法 経験に基づくこれらの方法は、よいアドバイスかもしれませんが、実施計画なしに活用することはできません。ここで PCB基板設計ソフトウェアの出番です。隔離は、PCB設計を色分けすることで完了できます。ACおよびDCシステムは、それぞれに異なる色を割り当てることにより、トラッキングできます。両システムが物理的にも電気的にも相互に隔離されていることを確証できます。方法については、
記事を読む
PCB設計ワークフローにおける設計ルールチェック
1 min
Blog
PCB設計者
製造技術者
PCB設計ワークフローでは、複数のポイントで設計ルールのチェックが行われます。どの設計ルールを定義する必要があるか、およびPCB設計ソフトウェアで手動の設計ルールチェックをいつ実行するかを確認してください。
記事を読む
Altium Designerにおけるリジッドフレックスのサポート
1 min
Blog
Altium Designerは、3Dレンダリング機能と複数のレイヤースタックを作成する能力を備え、フレックス回路およびリジッドフレックス回路の設計をサポートしています。
記事を読む
フレキシブルプリント基板設計のベストプラクティス
1 min
Blog
フレキシブル回路設計のヒントをご紹介しますので、フレキシブルまたはリジッドフレキシブルPCBの構築に役立ててください。
記事を読む
使用すべきソルダーマスク拡張値
1 min
Blog
PCBの最上部に来るソルダーストップマスク層は、表面層の銅箔を覆う保護膜となります。コンポーネントを取り付けはんだ付けができる表面を確保するため、ソルダーマスクを表面層のランディングパッドから引き戻す必要があります。最上層のパッドからソルダーマスクを剥がすと、パッドの端がある程度拡張し、コンポーネントにNSMDまたはSMDパッドが作成されます。 アセンブリの欠陥を防ぎ、はんだ付けのための十分なスペースを確保できるよう、ソルダーストップマスクの拡張をどの程度引き戻す必要があるでしょうか?結局のところ、部品の小型化とレイアウトの高密度化が標準となっているため、ソルダーマスクの拡張によってソルダーマスクに小さなスライバが形成され、表面層に残ります。そのため、ある時点で、ソルダーマスクの最小許容スライバと必要なソルダーマスクの拡張により設計ルールの競合が起き、これら両方を同時に満たすことができなくなる場合があります。 ソルダーマスクの拡張とスライバの間でバランスをとる ペリメーター・パッド・サイズと位置ずれの許容差 これが、ポジティブなソルダーストップマスクの拡張を適用し、NSMD(Non-Solder Mask Defined)パッドを作成する主な理由です。これを正当化するのは、銅エッチングプロセスと関連しています。というのも、銅エッチングは湿式化学プロセスで、ソルダーマスクの塗布よりも精度が高いためです。そのため、パッドの全領域を常に露出させるために、パッドの周囲に十分な大きさのソルダーマスクの拡張を施しています。 ソルダーレジスト塗布プロセスの精度が低いと位置がずれる可能性があり、ソルダーストップマスクがPCBレイアウトで定義された位置と完全に一致しません。ただし、ソルダーマスクの拡張が十分に大きい場合は、位置ずれが補正され、ソルダーマスクを通してパッドが完全に見えるようになります。私が見てきた中で ソルダーマスク拡張の最小推奨値はパッド全方で3milというもので、これにより約2milの位置ずれが補正されます。 パッドがすでに十分に大きい場合は、ソルダーマスクの拡張値を小さくすることができます。より大きなパッドを使い、拡張値を小さくすると、多少の位置ずれがあっても、露出したパッド領域が十分に大きくなることが保証されます。いずれにせよ、近くのパッド/ビアの間にソルダーダムを置く必要性も検討する必要があります。 ソルバーダムの最小サイズ ソルダーレジストの最小スライバサイズにより、特定のリードピッチに適用できるソルダーストップマスクの拡張開口部が制限されます。リードピッチが十分に大きい場合は、ソルダーダムの限界に達することを心配することなく、いつでも大きなソルダーマスクの拡張を適用できます。リードピッチが狭かったり、コンポーネントが密集したりすると、ソルダーマスクの最小スライバサイズに影響する可能性があります。その場合、位置ずれを補正するか、ソルダーダムを常に確保するかを決定する必要があります。ピッチ配列が細かいコンポーネントでは、後者を選択するのがお勧めです。 ソルダーストップマスクウェブをPCB基板の表面に貼り付けるには少なくとも約3mil必要なので、パッドピッチが20mil以上の場合、パッド周りのソルダーマスクの膨張を最小限に抑えることができます。内部リード(BGAフットプリントの内部ボールなど)では、SMDパッドを使用し、パッドとビアの間に小さなダムを配置するのが適切です。 値の決定は製造会社に任せるべきか? ブランケット設計ルールを設定し、0milまたは1milの拡張を適用して密度要件を達成できるようにした場合、製造業者は追加の拡張値を適用する可能性があります。この場合、製造業者は貴社にそれを伝えないかもしれません。ですから、表面層のパッドとソルダーストップマスクステンシルの間の位置ずれを補正するために製造業者が拡張値を適用することがあることを知っておくとよいでしょう。 私自身は、次の2つの理由から、ほとんどのプロジェクトでマスクを0milに設定しています。 非常に高密度のレイアウトでない限り、ほとんどのコンポーネントに使用しているフットプリントには十分な大きさのパッドがあり、一般的な程度の位置ずれでパッドのはんだ付け領域が大幅に減少することがないため。 私が契約している製造業者は数社しかなく、彼らがソルダーマスクの拡張値を増やす傾向にあることや、そのプロセスについて私自身がよく理解しており、彼らが DFMレポートを送ってくるときには、どのような修正したいのかを正確に確認する機会があるため。 2点目は、契約先の製造業者や実装業者の作業の傾向やプロセスを貴社が理解しておくべき理由を浮き彫りにしています。当社には、中小規模の顧客プロジェクトに限って使用する製造パートナーが数社あり、彼らが何を期待し、最初のDFM/DFAレビューの後に当社が受け取るかもしれないフィードバックを把握しています。
記事を読む
PCBレイアウトにおける寄生容量の低減方法
1 min
Blog
パラシティック容量を減らして、PCBレイアウト内の高周波ノイズの結合を防ぐ方法を学びましょう。
記事を読む
高電圧PCBの設計とレイアウトのための材料選択
1 min
Blog
高電圧PCB設計には、高電圧に耐えられ、過電圧や高温環境での使用も可能である、特別に設計された基板材が必要です。
記事を読む
Pagination
First page
« First
Previous page
‹‹
ページ
8
現在のページ
9
ページ
10
ページ
11
ページ
12
ページ
13
Next page
››
Last page
Last »