Skip to main content
Mobile menu
PCB設計
Altium Designer
世界中の設計者に支持される回路・基板設計ソフトウェア
CircuitStudio
エントリーレベルでプロ仕様のPCB設計ツール
CircuitMaker
個人、オープンソース、非営利団体のための無料PCB設計ツール
Altiumに乗り換える理由
他のPCB設計ツールからAltiumに乗り換える理由と方法を確認する
ソリューション
Altium Enterprise ソリューション
デジタルトランスフォメーションへの 最終ステップ
電子部品プラットフォーム
世界中の技術者が利用するOctopart
Altium 365
リソース&サポート
製品情報
無償評価版
ダウンロード
拡張機能
リソース&サポート
Renesas / Altium CEO Letter To Customers
全てのリソース
サポートセンター
マニュアル
Webセミナー
コミュニティ
フォーラム
バグの報告
アイディア
教育
専門家育成トレーニング 資格取得プログラム
Comprehensive Career Training for Altium Software and Design Tools
大学・高専
Academic Licenses, Training, Sponsorships and Certificates for Higher Education
オンラインストア
Search Open
Search
Search Close
サインイン
高速設計
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
無料トライアル
高速PCB設計
高速設計の課題に対処するための簡単なソリューション
ソリューションを探す
高速PCB設計
Overview
All Content
Live Webinars
Filter
0 Selected
Tags by Type
0 Selected
全て
Software
0 Selected
全て
Clear
×
Clear
0 Selected
Tags by Type
全て
4
ビデオ
2
ホワイトペーパー
2
0 Selected
Software
全て
5
Altium Designer
5
グラウンドプレーンがない差動ペア:問題ですか?
一部の設計者は、グラウンドがない差動ペアでも問題ないと言います。では、誰が正しいのでしょうか?差動ペアのグラウンドプレーンの利点と欠点を検討します。
PCBシグナル:高速PCB設計の重要要素
課題の理解 どれくらいが長すぎるのか? インピーダンスのマッチング リターンエネルギーはどこで流れるのか? 差動ペア ビアについては? クロストーク 時間に合わせて踊る 基板 材料 レイヤー 可能なレイヤースタックアップ 課題の理解 この記事の目的は、高速設計の主要な要素を紹介し、それぞれの要素がAltium Designerでどのように取り組まれているかを議論することです。この記事は高速設計の完全な議論を提供しようとするものではありません。そのため、高度に経験豊富で学識深い設計者やエンジニアが、この主題に関して優れた参考文献や書籍を多数執筆しています。この記事の研究中に使用された著者や論文へのリンクについては、 参考文献 セクションを参照してください。 PCB設計が高速設計であるとは具体적にはどういうことでしょうか?確かにそれは物事が迅速に行われることに関係していますが、ボード上で使用されるクロックレートだけの話ではありません。デバイスが高速でエッジを切り替えるとき、つまり、信号がルートを伝わってターゲットピンに到達する前に遷移が完了するほど迅速に状態が切り替わるデバイスが含まれている場合、その設計は高速設計とされます。この状況では、信号がソースピンに反射され、元の信号データが劣化または破壊される可能性があります。高速エッジを持つ信号は、ルートから放射して隣接するルートにカップリングすることも、さらに放射して電磁干渉(EMI)となり、製品が強制的な放射基準を満たさなくなることもあります。 信号に高速のエッジがある場合、エネルギーがルーティングを通じて移動する方法が変わります。エッジレートがゆっくりと変化する回路では、エネルギーがパイプを通って水が流れるように、ルーティングを通じてエネルギーが流れると考えることができます。はい、水がパイプを押し通される際に摩擦によっていくらかのエネルギーが失われますが、基本的にはそのほとんどが他端に到達します。DCまたは低切替え周波数の回路では、ルートの抵抗を計算し、途中で失われるエネルギーの量が回路の性能に影響を与えないようにすることができます。 高速設計ではそれほど単純ではありません。なぜなら、配線された銅を通じて電子として流れるエネルギーだけでなく、高速で切り替わる信号では、そのエネルギーの一部が配線された銅の周りを電磁エネルギーとして移動するからです。これで、あなたはもはや電子のための銅の経路を設計しているのではなく、プリント基板に埋め込まれた一連の伝送路を設計しているのです。
シグナルインテグリティーの問題を最小限に抑えるグランドバウンス低減方法
学生時代にバスケットボールチームで活躍した父とは異なり、私は入団テスト中、ボールをほとんどバウンドできませんでした。言うまでもなく、私はスポーツを始める前にやめてしまいました。NBAプロになるという夢は打ち砕かれましたが、その後、格闘技への情熱を見出しました。私はバスケットボールをうまく扱うことはできませんでしたが、少なくとも格闘技では足の甲で相手を跳ね返して(バウンスして)対抗することができました。 バスケットボールをバウンドできなくても大きな問題にはなりませんが、電子機器のグランドバウンスを理解していないと、回路にとって大きな問題になりかねません。信頼できるPCBレイアウトエンジニアとして優れた能力を発揮するには、回路およびシグナルインテグリティーへのグランドバウンスの影響に関する知識が必要です。グランドバウンス低減技術を考慮すれば、設計全体でPCBのシグナルインテグリティーのグランドバウンスを最小限に抑えることができます。 グランドバウンスとは グランドバウンスを理解するには、集積回路(IC)の中核を形成するスリープトランジスタとGNDピンの基本を詳しく理解する必要があります。下図は、マイクロコントローラーやランダムアクセスメモリ(RAM)などのICの典型的なI/Oを形成するCMOSバッファ回路を示しています。 PCB内のグランドバウンスノイズは測定が難しい問題であり、これがパワーゲーティングとシグナルインテグリティーに与える影響は、PCBのトレースインピーダンスとPDNインピーダンスに関連しています。ほとんどの高速設計では、ドライバー回路の出力ピンは通常、ある程度の入力容量を持つ負荷に接続されます。出力ピンが論理回路「1」にアサートされると、負荷の寄生容量はVCCまで完全に充電されます。出力バッファ回路がオフになって論理「0」になると、容量性負荷が放電して、ドライバーに突入電流が戻ります。この急速な電流はドライバーのグランドピンを流れます。 理想的な状況では、ICパッケージと基板の接地は同じ電圧に保たれます。ただし、現実の設計では、ボンドワイヤ、リードフレーム、PDNの寄生インダクタンスにより、ダイグランドと基板グランドの間にある程度の寄生インダクタンスが存在します。これらの素子からのパッケージの総インダクタンスは、上記の回路図に示すように、一連の直列コイルとしてモデル化できます。 電流がボンドワイヤ/リードフレーム/PDN上の インダクタンスを駆け抜けると、ダイグランドと基板グランドの間に逆起電力が蓄積します。これにより、ダイグランドと基板グランドの電圧レベルが瞬間的に異なる現象が生じ、グランドバウンスノイズが発生します。この蓄積は、これらの要素のDC抵抗とICパッケージ/ダイの寄生によって減衰されます。寄生とトレースのこの配置が、定義されたインピーダンスと共振周波数を持つ等価RLC回路を形成しているということを理解すると、これが信号の動作にどのように影響するかを正確に理解できます。 PCBのグランドバウンスが回路と信号に与える影響 PCB内のグランドバウンスが最小限であれば、ダイグランドや信号の動作に混乱を引き起こすことはありません。グランドバウンスは引き続き発生しますが、気付かれないほど小さいかもしれません。ただし、グランドバウンスによって生成される逆起電力が大きい場合、特に複数の出力が同時に切り替えられる場合、デバイスのグランドレベルは、ICの他のピングループに影響しうるレベルにまで上昇します。 駆動コンポーネントを容量性負荷に接続するトレースを見ると、トレースのインダクタンスと静電容量も、グランドバウンスによる信号への影響に影響を与えます。すべてのトレースには、寄生容量とインダクタンスにより、ある程度のインピーダンスがあることに留意してください。実際のトレースにはこれらの寄生があるため、トレース、ドライバーのGNDピンのインダクタンス、および負荷容量によって形成される集中RLCネットワークにこれらを含める必要があります。 ダイ上のレベルシフト たとえば、グランドバウンスが発生するマイクロコントローラーでは、パワーレールと接地間で測定された電圧が、グランドバウンスがない場合よりも1.5V高くなるようにグランド電位がシフトする場合があります。つまり、パワーレールとダイグランドの電位差は、パワーレールと基板グランド間で測定された電位よりも1.5V高くなります。別の言い方をすれば、ダイグランドとPCBのGNDプレーンの間には瞬間的な1.5Vの電位があります(つまり、ドライバーのGNDピンの両端で測定)。 この例では、マイクロコントローラーに接続された3.3Vで動作する論理ICは、デバイスの接地の電位レベルがシフトしたために1.5Vの論理「低」信号を受信しているため、論理「0」信号を「1」と解釈する場合があります。この例を続けて説明すると、入力電圧レベルはダイグランドを基準にして見られるため、グランドバウンスが発生しているデバイスは他のコンポーネントからの入力を誤って読み取る可能性もあります。たとえば、論理「高」 信号が「低」と誤って解釈されるのは、ダイグランドの上昇により、入力ピンの電圧が3.3Vではなく1.8Vになるためです。これは、最小論理高電圧の2.31Vを下回ります。 グランドバウンスの影響は、すべての出力が同時に低になると最悪になります(上の画像を参照)。このとき、ダイグランドの電圧差が大幅に増加します。さらに、このレベルシフトはRLCネットワークで急な立ち上がり信号のように機能し、特定の条件下では減衰不足の過渡発振を示す可能性があります。 レベルシフト時の発振 ダイグランドのレベルシフトは永久に持続するわけではなく、ダイグランドとPCBグランドの電位差は最終的にゼロに戻ります。トレースと負荷から寄生容量が生じるため、このレベルシフトは、RLC回路で見られるのと同じように減衰発振を示す可能性があります。これらの発振は、電流ループ内の総抵抗に応じてさまざまなレベルの減衰を示すことがあります。ダイグランドに発振があると、この発振が出力信号に重畳され、過渡リンギング現象が発生します。下の画像は、グランドバウンスによるこのような減衰不足の過渡発振を示しています。 不完全な状況では、ドライバーの出力インピーダンスはゼロで、負荷入力インピーダンスは無限大で、トレースに発生する過渡現象の減衰はゼロになります。実際の状況では、ドライバーを通る直流伝導と、LOW状態とHIGH状態でのインピーダンスにより、減衰はゼロ以外になります。減衰( R/2
高速PCB設計入門: クロストークの除去方法
最近、結婚披露宴で、同じテーブルに座っている男性と話をしようとしました。残念なことに、私たちの間に座っていた女性が、私の反対側に座っている人と会話を続けていました。披露宴の騒音を背景に会話することは、何より難しいことでした。私たちの間でもう1つ話し合いが行われていたために、会話が成り立ちませんでした。私たちは、クロストークしていたのです! 会話中のクロストークはとても迷惑なものですが、PCBレイアウト上のクロストークは、悲惨な結果を招く可能性があります。クロストークが修正されない場合、完成した回路基板が まったく動作しないか、あるいは断続的な問題に悩まされる可能性があります。クロストークとは何か、また、それを防ぐためにできることは何かを見てみましょう。 高速PCB設計におけるクロストークとは? クロストークは、 PCB上にあるトレース間の意図しない電磁結合 です。この結合によって、物理的に互いに接触していない場合でも、一方のトレースの信号パルスがもう一方のトレースの信号を圧倒してしまう可能性があります。これは、並列トレース間の間隔が狭い場合に、発生する可能性があります。トレースが製造目的での最小間隔を維持していたとしても、電磁目的では十分ではない場合があるのです。 互いに並行に走っている2つのトレースを考えてみてください。一方のトレースの信号の振幅がもう一方のトレースよりも大きい場合、片方のトレースに積極的に影響を与えてしまう可能性があります。そして「被害者」トレースの信号は、それ自体の信号を伝導する代わりに、攻撃者トレースの特徴を模倣し始めます。これにより、クロストークが発生します。 クロストークは通常、同じ層の上で隣り合って走る2つの並列トレース間で発生すると考えられています。しかし、隣接する層の上で隣り合って走る2つの並行トレース間でクロストークが発生する可能性は、さらに大きくなります。これは、 ブロードサイド結合と呼ばれ、2つの隣接する信号層が非常に薄いコア厚で分離されているために、発生する可能性が高くなります。この厚さは4ミル(0.1ミリメートル)になることもあり、同じ層の上にある2つのトレース間の間隔よりも小さい場合があります。 クロストークを除去するためのトレース間隔は一般的に通常のトレース間隔の必要条件よりも大きい 設計からクロストークの可能性を除去 幸運なことに皆さんは、クロストークのなすがままではありません。クロストークの可能性を最小限に抑えるように基板を設計すれば、これらの問題を回避できるのです。基板上のクロストークの可能性をなくすために役立つ設計テクニックを、いくつかご紹介します。 差動ペアと他の信号配線の間の距離を、できるだけ大きく保ちます。 経験則 は、ギャップ = トレース幅の3倍です。 クロック配線と他の信号配線との差を、できるだけ大きく保ちます。ここでも、同じギャップ =
ADC/DAC用のJESD204C規格とは何ですか?
JESD204Cは、商用宇宙アプリケーションでより多く登場している高サンプルレートのRF ADCに対して、標準化されたインターフェースを提供します。
アイダイアグラムとは?
アイダイアグラムは、高速チャンネル内の信号の動作と、反復励起に対するチャンネルの応答について知る必要があるすべての情報を提供します。
Pagination
First page
« First
Previous page
‹‹
ページ
1
現在のページ
2
ページ
3
ページ
4
ページ
5
ページ
6
Next page
››
Last page
Last »
💬
🙌
Need Help?
×
📞
1-800-544-4186
📞
1-858-864-1798
✉️
sales.na@altium.com
🛟
Support Center
📣
Ask Community
📞
Contact Us