Skip to main content
Mobile menu
PCB設計
Altium Designer
世界中の設計者に支持される回路・基板設計ソフトウェア
CircuitStudio
エントリーレベルでプロ仕様のPCB設計ツール
CircuitMaker
個人、オープンソース、非営利団体のための無料PCB設計ツール
Altiumに乗り換える理由
他のPCB設計ツールからAltiumに乗り換える理由と方法を確認する
ソリューション
Altium Enterprise ソリューション
デジタルトランスフォメーションへの 最終ステップ
電子部品プラットフォーム
世界中の技術者が利用するOctopart
Altium 365
リソース&サポート
製品情報
無償評価版
ダウンロード
拡張機能
リソース&サポート
Renesas / Altium CEO Letter To Customers
全てのリソース
サポートセンター
マニュアル
Webセミナー
コミュニティ
フォーラム
バグの報告
アイディア
教育
専門家育成トレーニング 資格取得プログラム
Comprehensive Career Training for Altium Software and Design Tools
大学・高専
Academic Licenses, Training, Sponsorships and Certificates for Higher Education
オンラインストア
Search Open
Search
Search Close
サインイン
PCB設計
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
無料トライアル
Easy, Powerful, Modern
The world’s most trusted PCB design system.
Learn More
PCB設計
デザインの卓越性を達成する:PLMの道
PCB業界では、エンジニアはこれまで以上に設計の卓越性を追求しなければならなくなりました。それはもはや選択ではなく、必要不可欠なものです。これは、厳格な業界基準を満たすだけでなく、不安定な市場で優れた機能性を提供する高性能で信頼性の高い電子機器を意味します。この市場はエンジニアに対し、シフトや需要の増加による締め切りと予算の厳格化に対応するよう迫っています。設計者とエンジニアの負担を軽減するために、製品ライフサイクル管理は、PCBのライフサイクルに関連するすべてのデータとプロセスの管理のための戦略的なフレームワークの確立を支援します。これは、その初期概念化から最終的なエンドオブライフ処分に至るまでです。 堅牢なPLMシステムを活用することで、PCBエンジニアは設計効率を向上させ、異なるチームが革新と協力を受け入れるのを支援し、卓越した製品品質を保証することができます。 PLMにおける設計卓越の重要要素 合理化された設計プロセス: PLMソフトウェアは、回路図、レイアウト
記事を読む
統合PLMソリューションで設計の障害を克服する
PCB設計は常に製品開発と密接に関連しており、市場に投入される製品がより高度になるにつれて、機械設計やソフトウェア開発のような領域にも広がっています。システムの電子設計部分は、残りの製品データとどのように統合されるのでしょうか?答えは、CADデータ管理システムとPLMシステム間の統合にあります。 紙の上では、既存の設計ツールとPLMの統合は単純に聞こえるかもしれませんが、実際には挑戦なしには進みません。PLM統合には、前もっての時間と開発努力(もちろんコストも)が必要ですが、投資のリターンは、エラーの排除、市場投入までの時間の短縮、設計、製造、品質管理間のクローズドループから得られます。工学の各分野のCADシステムが統合されたPLMソリューションにリンクされると、 企業が直面する一般的な障害と、統合されたPLMソリューションがそれらをどのように克服できるかを見てみましょう。 異なるデータの苦労 最大の課題の一つは、PCB設計データの断片化された性質にあります。設計ファイル
記事を読む
PCB設計の革新:PLMの役割
今日の電子機器に必要とされるプリント基板の数が増加していることは、設計者とエンジニアに、 relentless miniaturization、性能能力の向上、および開発時間枠の縮小を追求させ、PCBが構想され、実現される方法を変えています。このような高需要環境では、従来の設計ツールは限界に達しており、変化が必要とされています。このニーズに応え、業界をより効率的な方法論に移行させるために、開発者たちは製品ライフサイクル管理ツールを考案しました。これは、PCB設計体験を根本的に変え、高品質で高性能な回路基板を作成するための設計およびエンジニアリング能力を向上させています。 共同作業のための中央集権的ハブ PLM導入前は、PCB設計データはしばしばサイロ化され、ファイルサーバーや個々のワークステーションに散在していました。残念ながら、この断片化されたアプローチは、情報を探すための時間の無駄、バージョン管理の問題
記事を読む
DCブロックフィルター設計
この記事では、オシロスコープの入力チャネル用のDCブロックフィルターを設計およびシミュレートする方法について説明します。コンポーネントの選択、レイアウトの最適化、シミュレーション結果、および実世界での検証について学び、さまざまなハードウェア設計ニーズに対応する高性能フィルターを作成します。
記事を読む
データシートを超えて:電圧レギュレータの実世界テスト
マークは電子部品の複雑な世界に深く潜り込み、特に線形電圧レギュレータとスイッチングレギュレータの性能に焦点を当てています。彼はこれらのコンポーネントの動作、利点、および制限について詳細な分析を提供します。マークの探求には、異なるブランドやモデルの詳細な検討が含まれ、その効率、ノイズレベル、および電圧ドロップアウトを評価しています。彼はこれらの違いの実際的な意味を強調し、データシートのみに頼ることなく実世界でのテストの必要性を強調しています。マークの発見は、適切なレギュレータを選択することがプロジェクトの性能と効率に大きな影響を与える可能性がある、敏感な回路を扱っている人々に特に関連しています。
記事を読む
0:46:51
自信を持って設計:Altium 365がSiliconExpertに対応
ウェビナーを視聴して、Altium 365でのSiliconExpert Integrationがどのようにワークフローを最適化し、設計プロセスを向上させるかを学びましょう。
ビデオを見る
AIラボアシスタントの構築
この記事では、Ari MahpourがGPT ActionsとChatGPTを活用してAIラボアシスタントを組み立てる方法を紹介します
記事を読む
将来の電子設計がチップレットベースであるかもしれない理由
半導体業界の絶えず進化する風景の中で、従来の一枚岩のチップアーキテクチャからよりモジュラーなチップレットベースの設計への移行が起こっています。この移行は、製造技術の変化だけではありません。これは、現代の世界を動かす電子部品を概念化し、設計し、提供する方法において、電子業界の重要な進化を代表しています。チップレットベースのアーキテクチャは、イノベーションの推進力として台頭しており、ムーアの法則の時代を超えて、コンピューティング性能の指数関数的な成長を続けるための有望な道を提供しています。 チップレットの理解 その核心において、 チップレットは小さな、独立して製造された半導体コンポーネントであり、単一のパッケージ内で組み合わされることで、従来の単一チップとして機能するように協調して動作します。この分散化により、一枚岩の設計では達成できなかった柔軟性とカスタマイズのレベルが可能になります。これらのチップレットをビルディングブロックとして扱うことで
記事を読む
Doublepointでタッチテクノロジーを再考
このCTRL+Listenポッドキャストのエピソードでは、Doublepointのビジョナリーであるオット・ペンティカイネンと共に、タッチテクノロジーの未来について掘り下げます。Doublepointがどのようにして私たちのデジタル世界を再形成し、これまで以上に直感的で、個人的で、リアルなものにしているかを発見してください。 エピソードを聴く: エピソードを視聴する: エピソードのハイライト: Doublepointのミッション ハプティックフィードバックを超えて ジェスチャー検出技術 タッチテクノロジーの未来 リンクとリソース: Doublepointについてもっと知る こちら オットに連絡を取る こちら トランスクリプト: ジェームズ: これはOctopartがお届けするCTRL+Listenポッドキャストのジェームズです。私の共同ホスト、ジョセフ・パスモアと一緒に、今日はDouble PointのCEO、オットとお話しします。ショーに来てくれてありがとうございます
記事を読む
柔軟な回路で組み立てコストを削減する
電子製造の絶えず進化する世界では、効率性とコスト効果の追求は常に存在します。技術の進歩ごとに、組み立てプロセスを最適化し、コストを削減する機会が生まれます。これの興味深い例は、従来のワイヤーとケーブルシステムに代わってフレキシブル回路を採用することです。直感的には、フレキシブル回路技術のような特殊技術に移行すると、ワイヤーハーネスコンポーネントの価格を比較した場合に限定して見ると、特にコストが増加すると考えられがちです。このブログでは、フレキシブル回路を取り入れることで、全体的な組み立てコストを削減するだけでなく、追加の利点をもたらすいくつかの方法を見ていきます。 フレキシブル回路の理解 最も基本的な定義では、フレキシブル回路は、導体が薄い誘電体フィルムの層に挟まれ、曲げたり折りたたんだり柔軟に動かしても導体が損傷しない配列です。フレキシブル回路は、シングルサイド、ダブルサイド、マルチレイヤーがあり、それぞれが特定のアプリケーションに合わせて調整されています。 約束通り
記事を読む
Chatting Ultra HDI: Chrys Shea、PCBの小型化と今後の課題
OnTrack Podcastのこのエピソードでは、ホストのTech Consultant Zach PetersonがShea Engineeringの社長であるChrys Sheaと共に、Ultra HDIの革命的な世界を探求します。二人はPCBのはんだ付けとミニチュア化の未来を明らかにし、目前に迫る複雑な課題と突破口に光を当てます。専門知識で知られるChrysは、はんだ付けのためのテスト車両の開発やUltra HDIアセンブリの複雑さをナビゲートするための貴重な洞察を共有します。この会話は、電子製造の未来を形作る最先端の進歩を深く理解することを約束します。 Chrys Sheaが提供する専門的なガイダンスと革新的な戦略をお見逃しなく。彼女はSMTアセンブリとPCB設計の世界で先導的な声です。 エピソードを聴く: エピソードを視聴する: 主なハイライト: Shea Engineeringの社長であるChrys Sheaの紹介、特にUltra High-Density
記事を読む
重要な転換点:PCB設計における世代間ギャップの架け橋
このOnTrack Podcastのエピソードでは、ホストのZach PetersonがIPCの労働力パートナーシップディレクターであるCory Blaylockと話し合い、PCB設計と電子製造の分野内で迫り来る世代間のギャップについて、またそれらの業界がそれについて何をできるかについての深い議論を展開します。経験豊富な専門家の一世代がキャリアの終わりに近づくにつれて、新しい才能の波を育成する緊急性がこれまで以上に重要になります。このエピソードは、この分断を埋めるために待ち受ける挑戦と機会に深く潜り込みます。 エピソードを聴く: エピソードを見る: 主なハイライト: 世代交代: PCB設計の進化する風景を探り、経験豊富なプロフェッショナルの退職が新しい才能への緊急の必要性を生み出していることを説明します。 IPCの役割: 米国労働省によって承認された革新的な見習いプログラムを通じて、明日の労働力を開発するためのIPCの取り組みを発見します。 教室から業界への旅: Coryは
記事を読む
カスタムGPTアクションを構築してハードウェアと通信する方法
この記事では、Ari Mahpourが自宅やラボのハードウェアに接続するカスタムGPTアクションの作成方法を紹介します
記事を読む
DraftsmanでPCBパネル製造図面を作成する方法
すべての設計者が自分自身でPCBパネルを作成するわけではありませんが、これを行うように依頼された場合は、Altium Designerの組み込み描画機能を使用できます。
記事を読む
PCBコネクタ用ピンメッキ材料の耐久性
ピンヘッダーには耐久性を決定する重要な仕様があります:メッキ材料です。ここでは、PCBピンのメッキを選択する方法を説明します。
記事を読む
BOMコストを削減できるPCB部品の交換
PCB製造のBOMコストを削減したいですか?ここでは、総部品コストを大幅に削減できる部品の交換について紹介します。
記事を読む
Pi.MX8 プロジェクト - ボードレイアウト パート2
前回のアップデートでは、モジュールに適したレイヤースタックを定義し、ボード上に配置されたすべてのコンポーネントにファンアウトルーティングを追加することを見てきました。これらの準備に基づき、私たちは今、最初のトレースをルーティングする準備がほぼ整いました。しかし、ボード上の任意のコンポーネントを接続する前に、インピーダンスプロファイルを定義し、正しいトレース幅に対するマッチングデザインルールを設定する必要があります。 インピーダンスプロファイルの設定 レイヤースタックマネージャーでインピーダンスプロファイルを設定するのは簡単です。単終端と差動インピーダンスプロファイルの両方を定義する必要があります。必要なインピーダンス値に関する情報は、インターフェース標準とNXP i.MX8プロセッサのハードウェア設計ガイドから取得できます。以下のインピーダンス値は、設計で使用される単終端および差動の両方です: 以前に定義されたレイヤースタックでは
記事を読む
Pagination
First page
« First
Previous page
‹‹
ページ
4
現在のページ
5
ページ
6
ページ
7
ページ
8
ページ
9
Next page
››
Last page
Last »
他のコンテンツを表示する