Skip to main content
Mobile menu
PCB設計
Altium Designer
世界中の設計者に支持される回路・基板設計ソフトウェア
CircuitStudio
エントリーレベルでプロ仕様のPCB設計ツール
CircuitMaker
個人、オープンソース、非営利団体のための無料PCB設計ツール
Altiumに乗り換える理由
他のPCB設計ツールからAltiumに乗り換える理由と方法を確認する
ソリューション
Altium Enterprise ソリューション
デジタルトランスフォメーションへの 最終ステップ
電子部品プラットフォーム
世界中の技術者が利用するOctopart
Altium 365
リソース&サポート
製品情報
無償評価版
ダウンロード
拡張機能
リソース&サポート
Renesas / Altium CEO Letter To Customers
全てのリソース
サポートセンター
マニュアル
Webセミナー
コミュニティ
フォーラム
バグの報告
アイディア
教育
専門家育成トレーニング 資格取得プログラム
Comprehensive Career Training for Altium Software and Design Tools
大学・高専
Academic Licenses, Training, Sponsorships and Certificates for Higher Education
オンラインストア
Search Open
Search
Search Close
サインイン
PCB設計
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
無料トライアル
Easy, Powerful, Modern
The world’s most trusted PCB design system.
Learn More
PCB設計
Overview
All Content
ウェビナー
Filter
0 Selected
Tags by Type
0 Selected
全て
Software
0 Selected
全て
Clear
×
Clear
0 Selected
Tags by Type
全て
37
ニュースレター
14
OnTrack
13
ビデオ
13
ウェビナー
1
ホワイトペーパー
6
ソートリーダーシップ
5
0 Selected
Software
全て
54
Altium 365
1
Altium Designer
45
トレーニング
3
CircuitMaker
1
CircuitStudio
2
Tasking
2
Non-Altium Products
5
リジッドフレックスプリント基板のための焼結ペーストを用いたマイクロビアの設計
リジッドフレックスプリント基板(PCB)は、多くの電子梱包の課題に対するエレガントな解決策です。この技術は、リジッドPCBの耐久性とフレキシブル回路の多様性を組み合わせています。リジッドフレックスPCBは、スマートフォン、医療機器、自動車電子機器など、多くの現代のデバイスにとって重要です。
米国、中国製チップに対する関税を100%引き上げることを実施
バイデン政権が最近発表した、特に半導体チップを含む中国からの輸入品に対する大幅な関税引き上げは、電子業界に衝撃を与えました。
高層数スタックアップのためのPCBルーティング戦略
高層数のPCBをルーティングするために使用される戦略は多岐にわたり、PCBの機能性に依存します。高層数のボードは、低速デジタルインターフェースのグループから、異なる信号整合性要件を持つ複数の高速デジタルインターフェースまで、多種多様な信号を含むことがあります。これは、ルーティングの計画と各インターフェースへの信号層の割り当ての観点から見ると、挑戦を提示します。 高層数PCBのルーティング戦略を語る上で、多くのBGAにおけるピン配置設計にも触れないわけにはいきません。高ピン数BGAは、特にそのコンポーネントが典型的なマイクロプロセッサーやFPGAである場合、多くの異なるデジタルインターフェースを含むことがあります。これは、PCBの高層数の最も一般的な要因の一つです。 高層数設計において、同時に複数の課題が提示されるため、これらの課題と高層数PCBを成功裏にルーティングするために使用できるいくつかの戦略について説明します。 何がPCBの層数を高めるのか? 導入で述べたように、PCBが非常に多くの層を持つようになる最も一般的な要因は、大きなBGAの存在です。これらのコンポーネントはデバイスの下側に高いピン数を持ち、信号がピンに到達するためにはより多くの層が必要になります。これらのコンポーネントは、しばしば特殊なASIC、マイクロプロセッサ、またはFPGAであるため、異なる信号整合性およびルーティング要件を持つ多くのデジタルインターフェース、および多数の電源およびグラウンドピンを含んでいます。 多くの設計者は、BGA上のすべてのピンに到達するために必要な層の数を見積もるための単純な公式を思い出すでしょう。ピン間で信号をルーティングできるほど BGAピッチが大きい場合、1つの信号層あたり2列のBGAピンを配置できます: ボール間にトレースを配置できる粗ピッチBGAパッケージの場合、1層あたり2行/列をルーティングできます。 一部のBGAフットプリントは、内側の行に欠けているボールがあるなど、かなり複雑な場合があります。以下に示す例では、このBGAが上記の標準BGAに使用される同じ層数計算に従わない可能性があります。 Charlie Yapとの この記事でさらに学びましょう。 コンポーネントのピッチが非常に細かく、BGAフットプリントのパッド間にトラックを配置できない場合、必要なレイヤー数を倍にする必要があります。多くのピンが電源とグラウンドの場合、レイヤー数は確実に減少します。また、大量のクアッドパッケージが高いレイヤー数を要求する可能性もあります。高性能なものでは、数百ピンを持つことがありますが、これは中程度のサイズのBGAで見られる高い数値ではありません。 ルーティング戦略1:戦略なし! 「戦略なし」戦略は、最もシンプルで、レイヤー数を最小限に抑えつつ解決可能性を確保することのみに焦点を当てます。必要なレイヤー数を選択し、標準的なファンアウトアプローチを使用してBGAからルーティングを開始し、固定されたレイヤー数を適用してすべてのトレースを詰め込むか、自由にルーティングして必要に応じて新しい信号レイヤーを追加することから始めることができます。これは、次の場合に適用されます: 異なるインピーダンス仕様を異なるレイヤーに分けることを心配していない場合 すべてのインターフェースにインピーダンス仕様がない場合、例えばSPI すべてのインターフェースが同じインピーダンス要件を持っている場合 インピーダンス指定のあるインターフェースの数が少ない場合(たぶん1つか2つ) 言うまでもなく、この戦略でのルーティングは非常に整理されているとは見えないかもしれませんが、信号の整合性に対する焦点を減らし、解決可能性を優先することで、他の戦略よりも層数を少なく保つことができます。
Altium Designer Projects
FPGA上でのニューラルネットワークの構築
この記事では、Ari Mahpourがhls4mlとPynq Z2を使用して、Zynq SoCのFPGAファブリック上でニューラルネットワークを実行する方法を示しています。
EDAソフトウェアベンダーのロックにさよならを
マルチCADサポートにより、PCB設計チームのEDAベンダーロックが終了します。あなたの電子設計チームが、あらゆるECADファイル形式のサポートで何ができるかを確認してください。
ABFはICパッケージングサプライチェーンにおける重要な失敗点であり続けている
半導体産業は、供給チェーンにおいて成長する課題に直面しており、今日話題にするのはチップ自体ではありません。高性能プロセッサの生産において重要な役割を果たすアジノモト・ビルドアップ・フィルム(ABF)が、潜在的なボトルネックとなっています。最先端の電子機器への需要が急増し続ける中、ABF基板市場はそのペースに追いつくのに苦労しており、チップメーカーとその顧客にとって不安定な状況を生み出しています。 半導体製造におけるABFの重要性 IC基板で最も一般的に使用される材料であるABFは、集積回路とプリント回路基板の間の重要なリンクとして機能し、電気絶縁、熱放散、および信号分配を提供します。1999年に アジノモトによって初めて導入されたABFは、そのユニークな特性のために高性能プロセッサのパッケージングにおける 選択材料としてすぐに広まりました。エポキシ樹脂と無機フィラーで構成されるこのフィルムは、優れた寸法安定性を提供し、 先進的な製造技術を通じてマイクロスケールの回路の作成を容易にします。 現代の電子機器におけるABFの重要性は、過小評価できません。CPU、GPU、SoCなどの先進的なコンポーネントを搭載するスマートフォン、コンピュータ、データセンター、そして増え続ける車両のパッケージングにおいて、第一選択の材料です。細い線幅をサポートする能力と、付加プロセスとの互換性が、高密度インターコネクト(HDI)および超高密度インターコネクト(UHDI)PCBの製造に不可欠とされています。 ABF需要と市場の成長 過去数年間でABF市場は顕著な成長を遂げています。 Thornburg Investment Managementによると、2020年の8億3250万ドルから2028年には30億1000万ドルへと成長すると予測されており、これは約17.43%の複合年間成長率(CAGR)を反映しています。このABFの急速な成長は、主に半導体産業によって推進されていますが、 超高密度インターコネクト(UHDI)PCBも成長の原動力となるでしょう。 ABF需要の増加を促す5つの要因 ABF需要の成長を促進しているいくつかの要因があります: ミニチュア化:より小さく、より強力なデバイスへの絶え間ない追求は、ABF需要の主要な推進力です。コンポーネントが縮小するにつれて、より高い密度と細かいピッチを扱うことができる先進的なパッケージングソリューションの必要性が高まります。例えば、現代のスマートフォンは、ポケットサイズのデバイスに初期のスーパーコンピューターよりも多くの計算能力を詰め込んでいます。このようなミニチュア化のレベルは、ABFのような先進的なパッケージング材料を使用することでのみ可能であり、これにより、そのようなコンパクトな設計で必要とされる複雑な相互接続が可能になります。 5G技術:5Gは、大量のデータを高速で処理できる先進的な半導体を必要とします。ABF基板は、これらのチップをパッケージングする上で重要であり、5Gが約束する超高速、低遅延通信を可能にします。ABFの優れた電気的特性は、信号の整合性が重要な5Gアプリケーションに適しています。5G対応デバイスやインフラストラクチャの展開が続くにつれて、これらのアプリケーションでのABFの需要は大幅に増加すると予想されます。 持続可能性:ABFは、より効率的な設計をサポートし、全体的な材料使用量を削減できる能力のため、従来の材料と比較してより環境に優しいオプションと考えられています。ABF基板は、消費電力が少ない効率的なチップ設計を可能にすることで、持続可能性にも貢献します。これにより、携帯型デバイスのバッテリー寿命が延び、データセンターやその他の大規模コンピューティング設備の全体的なエネルギー消費が削減されます。 電気自動車(EV):現代のEVは、バッテリー性能から自動運転まで、あらゆることを管理するために多数のセンサーやプロセッサーに依存しています。これらのアプリケーションに必要な高性能チップは、しばしばそのパッケージングにABF基板を使用しています。高度運転支援システム(ADAS)や自動運転技術には、洗練されたプロセッサーが必要です。これらの複雑で高電力のチップをサポートできるABFの能力は、EV技術の進歩を可能にする重要な要素です。 人工知能:AIの爆発的な成長も、ABFへの需要を高める強力な力です。AIアクセラレーターや特殊な機械学習プロセッサーは、チップ設計の限界を押し広げ、熱の放散と信号の整合性を管理するために高度なパッケージングソリューションを必要とします。ABF基板は、これらの最先端のアプリケーションにおいてしばしば選択される材料であり、さらに材料への需要を促進しています。
Pagination
First page
« First
Previous page
‹‹
ページ
10
現在のページ
11
ページ
12
ページ
13
ページ
14
ページ
15
Next page
››
Last page
Last »
💬
🙌
Need Help?
×
🛟
Support Center
📣
Ask Community
📞
Contact Us