Skip to main content
Mobile menu
Discover
Develop
Agile
リソース&サポート
リソース&サポート
ラーニングハブ
サポートセンター
マニュアル
Webセミナー
Altium Community
フォーラム
バグの報告
アイディア
Search Open
Search
Search Close
サインイン
PCB設計
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
ホーム
PCB設計
PCB設計
業界をリードする専門家によるPCB設計の最新情報をご覧ください。
Learn How Altium Supports PCB Designers
Overview
All Content
ウェビナー
Filter
見つかりました
Sort by
最新
人気順
タイトル(昇順)
タイトル(降順)
役割
ECADライブラリ管理者
電気技術者
技術マネージャー
ITマネージャー
機械エンジニア
PCB設計者
購買・調達マネージャー
ソフトウェア
Altium Designer
Altium 365
Assembly Assistant
BOM Portal
Configurable Workflows
GovCloud
MCAD CoDesigner
Octopart
Requirements & Systems Portal
SiliconExpert
Z2Data
コンテンツタイプ
ガイドブック
ビデオ
ウェビナー
ポッドキャスト
ホワイトペーパー
適用
Americas
EMEA
ANZ
APAC
マイクロビア製造プロセスとHDI基板
1 min
Blog
PCB設計者
初期のHDI製造 高密度相互接続プリント基板に関する取り組みが始まったのは、研究者たちがビアサイズの縮小方法を調べ始めた1980年のことです。最初に革新を起こした人物の名前は分かりませんが、初期のパイオニアには、MicroPak LaboratoriesのLarry Burgess氏(LaserViaの開発者)、TektronixのCharles Bauer博士(光誘電ビアの開発者)[1]、ContravesのWalter Schmidt博士(プラズマエッチングビアの開発者)などがいます。 初の製品版のビルドアップ基板(シーケンシャルプリント基板)は、1984年のHewlett-Packardによるレーザードリル加工FINSTRATEコンピューター基板です。1991年には、日本のIBM野洲によるSurface Laminar Circuit(SLC)[2]とスイスのDyconexによるDYCOstrate [3]が続きました。図1は、初のHewlett Packard FINSTRATE基板を表紙に載せた Hewlett-Packard Journal(1983年)です。 HPのFinstrateレーザービア レーザードリル加工のマイクロビアは、HPが意図的に開発したのものではなく、新製品の32ビットマイコンチップをリバースエンジニアリングした結果としてもたらされました。「FOCUS」と呼ばれたこのチップは、NMOS-IIIで開発された32ビットのマイクロプロセッサーで、極めて大きい電流を消費するという特性を持っていました。当初意外に思われたのは、この新しいマイクロプロセッサーが、1.6mm厚の基板にある標準0.3mm径のスルーホールビアのインダクタンスをドライブできないという点です。ドライブできたのは、20~30ナノヘンリーのインダクタンスか0.125mmのブラインドビアのみでした。次の驚きは、FR-4の通常損失(Dj=0.020)をドライブするエネルギーがないことでした。そのため、純粋なポリテトラフルオロエチレン(PTFE)が使用されました。ICの冷却要件によって、極小のブラインドビアと非常に低損失の絶縁体を備えたメタルコア基板が必要とされていたため、ダイレクトワイヤボンド集積回路(IC)を備えた銅コアのビルドアップ基板が作成されました。 図1. 一般生産された最初のマイクロビア。1984 年に生産を開始したHewlett Packard
記事を読む
高密度接続用の基板材料
1 min
Blog
この記事では、HDI回路の製造に使用される材料について解説します。プリント基板用の材料については、いくつかの優れた資料(例えば、Holden & Coombsにより編纂された『プリント基板回路ハンドブック』など)が存在するため、ここではHDIに固有の材料に限って解説します。 HDI用の材料 現在のHDI材料市場は、BPA Consulting Ltd.により、全世界で8,300万平方メートルと推定されています。BPA Consulting社は、この市場を使用量の順に11のHDI材料に分類しています。 レーザー穴開け可能プリプレグ - 40.4% RCC - 28.3% 従来型プリプレグ - 17.2% ABFilm - 5.0%
記事を読む
高密度相互接続の導入
1 min
Blog
エレクトロニクスの進化 エレクトロニクスは比較的新しい業界で、トランジスタが発明されて以来まだ65年しか経っていません。真空管が100年ほど前に開発されましたが、第2次世界大戦中に通信、レーダー、弾薬用ヒューズ(特に最初の原子爆弾に使用されたレーダー高度計用電子ヒューズ)によって開花し、世界最大の業界へと進化を遂げました。機能ユニットを形成するために、全ての電子部品を相互接続し、組み立てる必要があります。エレクトロニクスパッケージングは、これら相互接続の設計と製造を統合する技術です。1940年代初頭以降、エレクトロニクスパッケージングの基本的な構築プラットフォームは、プリント基板(PCB)です。このガイドブックでは、図1に示すように、極めて複雑なプリント基板、高密度相互接続 (HDI)を設計するために必要な高度設計アプローチと製造プロセスについての概要を説明します。 本章では、高密度相互接続方法の選択において説明を必要とする基本的考察、主な利点、起こり得る障害について紹介します。ここでの重要ポイントは、相互接続とコンポーネントの配線です。様々な種類のHDI基板や設計から選択することで、密度やエレクトロニクス組み立て全体のコストと性能にどのような影響が及ぶ可能性があるのかに焦点を当てています。 1950年代初頭以来、プリント基板がそれまで以上に普及し相互接続の密度や複雑性が急増しましたが、それでも過去10年には及びません。従来のプリント基板技術により、今日要求されていることは大部分を満たすことが可能ですが、高密度相互続(HDI)と呼ばれる製品グループが成長しつつあり、さらに高密度な相互接続の実現に向けて使用されています。このHDIがこのガイドブックのテーマです。 相互接続のトレンド 高密度相互接続の促進要因は、プラットフォーム、性能、部品の3つに集約されます。 プラットフォーム 携帯電話、デジタル家電、ウェアラブルコンピューターなどの製品市場が急成長している中、この全てが新しいチャンスであることを意味しています。HDIにより、エレクトロニクスのさらなる小型化、軽量化が可能になります。 性能 半導体の立ち上がり時間短縮、RFやマイクロ波通信の増加、通信エリアにおける80GHzまでの周波数に伴い、HDIによる性能向上の促進が望まれます。 部品 トランジスタの小型化や立ち上がり時間の高速化により進化し続けるシリコン技術は、小型のフットプリントにさらに多くのリードを備えるというチャレンジにつながっています。これは、単位面積当たりにより多く接続することと同じになります。 この全てのトレンドによって、より密度の高い相互接続、より小さな配線とギャップ寸法、より小さなビアや、より多くのベリードビアが要求されます。基板設計実務において必ずしも変化が伴うわけではありませんが、従来の構築では限界に達する可能性があり、HDI構築の設計のために設計ストラテジーを再検討する必要があります。 図1. エレクトロニクスは密度において1940 年代から、現在の3D 積層や 埋め込みコンポーネントを含む高密度相互接続へと進化している HDI多層プラットフォーム
記事を読む
次の多層PCBでの非対称ストリップライン
1 min
Thought Leadership
芸術、科学、そして一般的に自然における対称性の美しさは、何か不思議なものがあります。絵画や図面の要素間の視覚的なバランスは、芸術作品の成否を左右することがあります。PCB設計は、工学であると同時に芸術でもあり、対称性は技術的な役割と同じくらい美的な役割を果たします。 高周波同軸ケーブルや導波管の代替品としての謙虚な始まり以来、ストリップラインは多層RFおよびHDI PCB設計者の間で主要な存在です。これらの導体は、周囲の誘電体が放射を抑制し、分散補償を提供する多層PCBの内層に密接に配置することができます。ロバート・バレットに感謝します! 対称対非対称ストリップライン配置 対称ストリップラインは、埋め込まれたマイクロストリップの次に単純な埋め込みトレース配置です。マイクロストリップや埋め込みマイクロストリップトレースとは対照的に、ストリップライントレースはPCBボード層に埋め込まれ、トレースの上下には固体の銅グラウンドプレーンが配置されます。多層PCBの内層には通常、ストリップライントレースが含まれています。 これらのトレースはグラウンドプレーンの間に埋め込まれているため、特に望ましい EMI耐性を持ち、PCB上の他のコンポーネントはストリップラインによって生成されるEMIの影響を受けません。 対称ストリップラインとは対照的に、非対称ストリップラインは基板の中央に埋め込まれていません。非対称ストリップラインは、周囲のグラウンドプレーンの一方に近い位置に配置されます。非対称ストリップラインを使用して信号をルーティングする場合、より近いグラウンドプレーンをストリップラインの参照として使用する必要があります。これにより、グラウンドプレーンにより強いリターン信号が誘導されることが保証されます。 より複雑な配置では、ストリップラインを単一層内の導体のカップルされた並列ペアとして配置することができます。このエッジカップル配置では、同じ層にトレースのペアを同じグラウンドプレーン間の距離で配置します。この配置により、特定の層内で差動ペアのルーティングが可能になります。 より興味深い配置は、ボードカップル配置を使用することです。ここでは、2つの非対称ストリップラインが対称配置で互いの上に積み重ねられます。これには、積み重ねられたストリップラインを収容するためにより厚い基板が必要になるかもしれませんが、横方向の基板スペースを節約し、2つのグラウンドプレーン間のより高い相互接続密度を実現します。この配置は、2つのストリップラインが並列であるため、差動ペアのルーティングにも使用できます。 緑色の多層PCB上のマイクロストリップとビアの相互接続 複数の計算機、複数の値 すべての可能なトレース配置に対するインピーダンス方程式をすべて暗記していなくても恥ずかしいことはありません。ストリップライン配置のためのインピーダンス計算機をインターネットで探している場合、結果をよく見て、他の計算機の結果と比較する必要があります。 また、さまざまな計算機で使用されている方程式を比較することも重要です。単一の非対称ストリップラインのインピーダンスを計算する方法はいくつかあります。一部の計算機は対数関数の差を使用し、別の計算機は幾何学的パラメータの数に対して約6次の依存性を持つべき乗関数を使用し、インターネット検索を通じて見つけることができる他の公式も間違いなく存在します。 これらの計算機は、ストリップライン配置を定義する構造パラメータによって、大きく異なる結果を生み出すことがあります。異なる2つの計算機は、5から10オームの差を生じさせることがあります。真のインピーダンス値は、これらの値の間のどこかにある可能性が高いです。これは、PCBでのインピーダンスマッチングに大きな問題を引き起こします。 高速または高周波信号を扱う際、5オームのインピーダンス不一致は、特定の周波数で 共振によるリンギングなどの問題を引き起こすのに十分な影響を与えます。高周波信号では、伝送線上の共振は大きな放射を引き起こします。非対称ストリップラインでは、これがHDIボードで問題を生じさせる可能性があります。幸いなことに、周囲の誘電体のため、ルーティング密度が低いボードはこのEMIの影響を受けません。 インピーダンス計算機を使用する際に生じうるこれらの潜在的な問題を考慮すると、インピーダンスを決定するために数値シミュレーションを使用することが最善です。ほとんどの人はこのタイプのソフトウェアにアクセスできませんが、投資する価値はあります。代わりに、別の設計戦略を検討して リンギングを防止または抑制することを考えてください。 パラメータ変調と差動ペア
記事を読む
IPCに準拠したフットプリントモデルの操作
1 min
Blog
エレクトロニクス業界は業界標準の恩恵を受けています。これらの標準により、選択したコンポーネントを設計間で再利用でき、仕様が一貫して、IPCに準拠した製造者が標準プロセスを使用して基板を構築できるという保証を設計者に与えます。これにより生産性が向上し、デバイスが確実に意図したように動作するようになります。 標準のIPC 7350シリーズ(具体的には、IPC 7351B)により、表面実装コンポーネントの領域パターンの一般的な物理設計パラメータが指定されます。この標準に適合させるには、さまざまなタイプのコンポーネントが特定のフットプリントを必要とします。製造業者はこの標準内で対処して、製品が品質の要件と信頼性の要件を満たし、再作業や破棄が確実に減るようにします。 PCBがIPC 7351B標準に準拠するとき、表面実装コンポーネントが標準化された領域の配置に準拠しない場合があります。コンポーネントを使用することはできますが、製造業者が特定のコンポーネントを操作するためにプロセスを適応させる必要があるので、彼らからの追加の設計コストを負担する必要がある可能性もあります。カスタマイズされた、独自のコンポーネントを操作している場合、コンポーネントをIPCに準拠するよう設計することは良いアイデアです。 IPC準拠のフットプリントを使用したコンポーネントの作成 全てのコンポーネントがIPCに準拠したフットプリントを使用しているわけではありません。幸いにも、最良のPCB設計ソフトウェアパッケージにはCADツールがあり、一部のシンプルな設計方法を適用する限り、これらのコンポーネントを操作することができます。例えば、領域のパッド間のピッチは標準トレース幅と違っており、これらの非準拠のコンポーネントを使用する場合は、設計ソフトでこの設定を変更する必要があります。 カスタムコンポーネントを使用するときに配置や配線の問題を避けようとするなら、手間を省いて直ちにIPCに準拠するコンポーネントのフットプリントを作成することができます。AltiumではIPC Compliant Footprint Wizardがアプリケーションの拡張機能として使用可能です。このウィザードではテンプレートを使用してIPCに準拠するコンポーネントのフットプリントを生成し、 手動でコンポーネントを作成するのに比べて、大幅に時間を節約します。 ウィザードにアクセスするには、新しいPCBライブラリファイルを作成する必要があります。これはスタンドアロンファイル、または既存のプロジェクトへの追加として作成することができます。この新規のウィンドウがアクティブな状態で、[Tool] メニューをクリックして [IPC Compliant Footprint Wizard] を選択します。さまざまなコンポーネントフットプリントを作成するオプションが表示されます。この例では、CQFPパッケージを使用します。
記事を読む
Altium Designerを使用したPCBレイアウトでの差動ペアのルーティング
1 min
Blog
Altium Designerは、PCBレイアウト内の差動ペアのルーティングと、コンポーネント間の差動インピーダンスの管理を迅速かつ簡単に行うことができます。
記事を読む
OnTrack Newsletter December 2018
1 min
Newsletters
OnTrack ニュースレター 2018年12月 第2巻第8号 ALTIUM DESIGNER
®
19 リリースのお知らせ Altium Designer 19の新機能をご覧ください 今回リリースされたAltium Designer 19には、いくつかの魅力的な新機能と拡張機能が搭載されています。Altium Disigner最新バージョンの機能について、概要を紹介します。 全文はこちらから 設計技術者へのIPC CIDトレーニングの重要性 CID IPCトレーナー、Stephen
記事を読む
Pagination
First page
« First
Previous page
‹‹
ページ
117
現在のページ
118
ページ
119
ページ
120
ページ
121
ページ
122
Next page
››
Last page
Last »