Skip to main content
Mobile menu
Discover
Develop
Agile
リソース&サポート
リソース&サポート
ラーニングハブ
サポートセンター
マニュアル
Webセミナー
Altium Community
フォーラム
バグの報告
アイディア
Search Open
Search
Search Close
サインイン
PCB設計
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
ホーム
PCB設計
PCB設計
業界をリードする専門家によるPCB設計の最新情報をご覧ください。
Learn How Altium Supports PCB Designers
Overview
All Content
ウェビナー
Filter
見つかりました
Sort by
最新
人気順
タイトル(昇順)
タイトル(降順)
役割
ECADライブラリ管理者
電気技術者
技術マネージャー
ITマネージャー
機械エンジニア
PCB設計者
購買・調達マネージャー
ソフトウェア
Develop
Agile
Altium Designer
Altium 365
Assembly Assistant
BOM Portal
PLM統合
Configurable Workflows
GovCloud
MCAD CoDesigner
Octopart
Requirements Portal
SiliconExpert
Z2Data
コンテンツタイプ
ガイドブック
ビデオ
ウェビナー
ポッドキャスト
ホワイトペーパー
適用
Americas
EMEA
ANZ
APAC
高速PCB設計でシグナルインテグリティを維持するための差動ペア配線
1 min
Thought Leadership
配線の状態が良好でない高速信号 私は過去に、お見合いをしたことがあります。ところが、見知らぬ相手の女性は遅刻の常習犯でした。時間通りにレストランに到着した私は20分ほど待った後に、約束をすっぽかされたのだと考えました。もう待つのはやめようと思ったとき、デートの相手が現れました。彼女の到着があと5分遅ければ、私たちが出会うことはなかったでしょう。高速PCBの設計でも、これと同じようなことが起こり得ます。それは、差動ペアが正しく配線されていない場合です。片方の信号が然るべき場所に到着しても、もう片方の信号が現れなければ万事休すです。デートをすっぽかされた信号の気持ちが傷つくことはないとはいえ、シグナルインテグリティーが低下したり、回路がまったく機能しなくなったりする問題が発生します。高速信号のための信頼できる橋渡し役として、双方が予定通り出会えるように配線を行う必要があります。 差動配線に関するヒントとテクニック その後も私たちはデートを重ねましたが、私は相手が時間を守れるようにするためにいくつかのトリックを使いました。相手を騙すことは道徳的に議論の余地があるでしょう。ただし、このトリックの対象が差動ペア信号であれば、時間厳守を徹底させることでシグナルインテグリティーを確保できます。下記のヒントを参考にして、タイミングを踏まえた差動ペア配線を行いましょう。 等長配線: 等長配線は差動ペア配線の最優先事項でしょう。片方の信号を放置したまま、もう片方だけで作業を進めるのは厳禁です。差動ペアの配線長が一致しないと、タイミング差によって相殺的干渉が発生し、シグナルインテグリティーが低下してしまいます。デートの相手の身長に対する好みが人によって違うのと同じように、配線長の不一致に対する耐性はそれぞれの回路によって異なります。設計を開始する前に、差動ペアを比較して、配線長の不一致に対するそれぞれの耐性を確認してください。 並行配線: 差動ペア配線では並行配線が最善策です。並行配線はEMIを解消するだけでなく、等長配線にも役立ちます。 電気的なクリアランスと沿面: 人間で言えば、今の恋人と昔の恋人に相当するように、それぞれ差動ペアはできるだけ近接させないことが肝心です。近接して配線した複数の差動ペアは、必ずマイナスの影響を及ぼし合います。十分な距離を保ことで、優勢度に関する衝突とEMIを最小限にすることができます。 差動ペアは、EMIの影響を受けやすいコンポーネントにも近接させてはなりません。この距離はクリアランスと沿面の両方で測定されるものです。回路の クリアランスと沿面の要件は、さまざまな方法を使って満たすことができます。 差動ペアをこのように配線しないこと 鋭角は厳禁: 差動ペアは方向を一切変えることなく、まっすぐに配線することが最善です。とはいえ、PCBのレイアウトがそれを許さないこともあるでしょう。女性のなかにはなめらかな体型の男性を好む人もいますが、差動ペアは「必ず」なめらかなカーブを好みます。カーブが鋭角になると、はるかに多くのEMIが発生するため、方向を変える場合は45度以内にすることが望ましいでしょう。EMIはカーブの内側と外側で発生し得るため、これを両方で考慮に入れることが重要です。 ビア: 一度に複数の恋人がいるのは、褒められたものではないでしょう。それと同じように、たくさんのビアを使うのも得策ではありません。ビアの配置は、シグナルインテグリティーの低下がわずかな場合にしか保証されません。ビアを使い過ぎるとシグナルインテグリティーが大幅に低下し、差動ペアで破壊的な反射が発生する恐れがあります。 PCBでビアを使わざるを得ない場合は、必ずスタブ長を短くするか、スタブのバックドリルを行ってください。ビアスタブは開口部のある伝送線路として機能するため、 信号反射が増加します。スタブ長によっては、信号が180度の角度で差動ペアに反射され、有効な反射が無効になることもあります。スタブのマイナスの影響を抑制するための一番の方法は、ブラインドビアまたはベリードビアを使用するか、ビアスタッズにバックドリルを行って、スタブ長を最小限にすることです。ただし、これらの方法はすべて製造コストを引き上げるため、予算が厳しい場合は距離を離した基板層でビアを接続するとよいでしょう。8層の基板では、1~7の接続に1~2の接続よりも短い未使用のスタブを使用します。 また、ビアが原因で発生する信号遅延量も一致させることが重要です。これについては、差動ペアの各伝送線路で同じ数のビアを使用するか、ビアが足りないほうの伝送線路に相応の蛇行配線を追加することで対処できます。誰もデートの邪魔者にはなりたくありません。すべてを均等に調和させるようにしてください。
記事を読む
適切なPCBグラウンディング設計で混合信号EMIを低減します
1 min
Blog
これらのPCBグラウンディング設計の実践を使用して、混合信号PCBレイアウトでEMIを防止するのに役立ててください。
記事を読む
スルーホール技術を使用する理由
1 min
Blog
技術に関しては、特に電子設計では、常に前に目を向け、振り返ることはありません。しかし、時には、古い技術が死なず、それを排除できない場合もあるようです。 ただし、必ず理由があります。より大きな利点がある新しいものを選択できるのに、なぜ品質の劣るものを使うのか ? その仮説に異議を唱えたいのです。 このブログでは、表面実装技術( SMT)が最適だと思われるのに、プリント回路基板(PCB)でスルーホール実装(THM)を使用するのはなぜか? 、という問いに答えます。 はじめに、 PCB設計プロセスに関連するので、スルーホール実装技術と表面実装技術の概要を簡単に説明しましょう。 スルーホールコンポーネント スルーホールコンポーネントには、ラジアルとアキシャルの2タイプのリードがあります。アキシャルのスルーホールコンポーネントは、コンポーネントの対称軸に沿って延びており、ラジアルのコンポーネントは、基板上の同じ面から平行に突き出ています。 スルーホールコンポーネントの側面図 PCB上のスルーホールコンポーネント 表面実装技術のコンポーネント 最近のPCB設計では、次のようになっています。表面実装技術(SMT)は、今日最もよく使用されているパッケージ技術です。これらのタイプのコンポーネントのリードは、非常に小さいか、またはありません。というのも、設計プロセスの間にPCBの表面に直接ハンダ付けされるのが、その主な目的になっているからです。 表面実装デバイス スルーホール技術と表面実装技術の長所と短所 スルーホール技術の長所と短所 長所 短所
記事を読む
マルチチャンネルデザインで回路の複製を簡単に行う方法
1 min
Thought Leadership
回路のコピー、特にフラット設計でのコピーにはいくつかの固有の課題が存在し、設計者の悩みの種になります。マルチチャンネル デザインにより回路と配線のデータを効率的にコピーすることで、フラット設計に関連する一般的な課題を解決できます。
記事を読む
EMI/EMC設計: AC信号およびDC信号の絶縁によるPCBノイズリダクション
1 min
Blog
AC信号およびDC信号は、動作のために両方を使用するデバイスにとって重要です 高校で、物理の先生がいつもEdisonとTeslaの「電流戦争」について話してくれたものです。当時は、Edisonが直流送電(DC)を好んで使用し、Teslaが交流電力(AC)を好んだ理由など、全く関心がありませんでした。それが、PCBのACシステムとDCシステムの間で起きる「電流戦争」を直接体験するようになって変わりました。今日、多くのPCBはACとDCの両方の回路を使用します。ACとDCがぶつかると、多くの場合電磁妨害(EMI)という形で問題が起きます。幸い、「電流戦争」と同じように事態は治まります。最新のPCBでは、ACとDCの信号は協調的に共存できます。カギは絶縁です。 電磁妨害からの絶縁 AC回路とDC回路の間の干渉を管理する簡単な解決策がいくつかあります。主に、コンポーネントの遮蔽、システムの隔離、専用電源、十分な基礎知識、非橋絡絶縁などです。 遮蔽: ご存知のとおり、EMIを放射する可能性のあるコンポーネントはPCBに多数あります。電源、ICクロック、オシレーターなど、いずれもACコンポーネントと干渉する可能性があります。「ノイズを発する」DCコンポーネントからのEMIを制限する、あるいは影響されるACコンポーネントを保護する方法の1つとして、ノイズの単純な遮蔽があります。遮蔽は基本的に、筐体内の空気を通じて放射されているEMIが遮蔽された回路を妨害しないことを保証します。したがって、保護や制約が必要なものがある場合は、人類が何百年も行ってきたことを行い、金属ボックス内に配置します。マルチレイヤー基板がある場合は、シールドとしてグランドプレーン層を使用することもできます。効果的である一方、遮蔽は基板の重量とコストが増加するので、EMIの低減と他の問題とを注意深く比較検討してください。 基板が単純でも複雑でも、AC/DCの隔離によるメリットはあります 隔離: EdisonとTeslaが同じ部屋にいたら、お互いに聞きたいことが必ずあったはずです。ないとすると、より物理的な妨げによるものでしょう。幸い、この2人は通常離れていたので、ACコンポーネントとDCコンポーネントはそれぞれの導線につながっていたはずです。チップでもトレースでもACシステムとDCシステムをPCB上に相互に離して配置すると、システム間に「クロストーク」がない状態を確保できます。ACとDCのシステム間に物理的な距離をとる十分なスペースが基板上にない場合は、隔離が必要なコンポーネント間のグランドプレーンにギャップを設けることもできます。グランドプレーンのギャップは、プレーンを流れる電流を強制的にギャップの周りに流します。この方法は、戦略的に使用して、反応しやすいシステムの周りに電流を経路変更できます。要するに、配線を交差しないということです。単純な回路では簡単にうまく隔離できますが、より複雑な回路ではかなり難しくなります。ACとDCの隔離のために最善を尽くしてください。ただし、最適な結果を得るのは難しい場合があることを覚えておいてください。 電源: 各AC/DC PCBでは、ACコンポーネントとDCコンポーネントに別々のパワーレールが必要です。DCコンポーネントは、電源からスパイクを引き起こし、電圧過渡になる可能性があります。ACコンポーネントはこの電圧過渡で動作する(あるいは動作しない)場合がある一方で、このとき最高能力で動作することはありません。電圧過渡が極端な場合、ACコンポーネントはエラーを発生するか、完全に動作を停止します。電源を別にすることは不便かもしれませんが、チップが動作しないよりはましです。 接地: ご存知のように、AC/DC回路の接地は複雑な問題です。あまりにも複雑なため、この記事では完全に掘り下げて考えることができません。しかしながら、アドバイスを提供することは可能です。接地グリッドまたはプレーンの電流のリターンパスを確認してください。DC電流は、最小の抵抗性インピーダンスパスに流れる一方で、ACのリターン電流は最小のリアクタンス性インピーダンスパスに流れます。ACのリターン電流では、最小リアクタンス性インピーダンスのパスは常にトレースの下にあります。リターンパスは忘れがちですので注意してください。グランドプレーンをチェックして、電流のリターンパスをトレースしてください。前の「隔離」の推奨事項も適用して、配線が見えない場合も、配線を交差しないようにしましょう。 橋絡(しない): 読者の皆様は、私が提供した(すばらしい)全てのアドバイスに従った場合、2つの適正に隔離されたACシステムとDCシステムを持っているはずです。プレーンにギャップがあり、それらの橋絡を考えているなら、お止めください。この記事全体は、AC/DCの隔離について書いていますので、橋絡を行うと、これまでのアドバイスは全く意味がなくなります。 PCB設計ソフトウェアが、AC信号とDC信号が隔離された基板の設計をサポートします ソフトウェアによりACとDCを隔離する方法 経験に基づくこれらの方法は、よいアドバイスかもしれませんが、実施計画なしに活用することはできません。ここで PCB基板設計ソフトウェアの出番です。隔離は、PCB設計を色分けすることで完了できます。ACおよびDCシステムは、それぞれに異なる色を割り当てることにより、トラッキングできます。両システムが物理的にも電気的にも相互に隔離されていることを確証できます。方法については、
記事を読む
PCB設計のためにメーカーに部品調達を依頼するメリットとデメリット
1 min
Blog
ターンキーPCB製造および組み立ては便利ですが、これらのサービスプロバイダーに部品の調達を信頼できますか?
記事を読む
適切なPCBレイアウトでは、どのようにして設計へのヒートシンクの追加を回避できるか
1 min
Thought Leadership
不具合のあるコンピューターモニターなどの製品リコールは、避けることのできる経済的負担です 私は、何年にもわたって、コンピューター技術が提供する必要のある高解像度や色深度を表示できる新しいモニターを買い続けてきました。モニターをつないで機能をテストするさまざまなアプリケーションを試すときはワクワクしました。どのアプリケーションも全く問題なく動作していたので、私は新しいモニターを自慢するため、オフィスを離れました。戻ってくると、モニターの表示がちらついているではありませんか。動揺した私は、電源を切ったり入れたりしてちらつきが解消するか確認しました。新しいモニターは明らかに壊れていました。 数日後、問題があるかどうか確認するため、モニターの筐体を開けて中をのぞいてみました。すると、ビデオ回路の1つが電源に直接取り付けられていることが判明しました。このため、仕様通りに機能しない温度にまでビデオ回路が熱くなって、モニターは壊れてしまったのでした。遮熱材を取り付けてビデオ回路から熱エネルギーを移すことで、簡単に修理できました。とはいえ、本当の問題は製品の設計にありました。ビデオ回路は、これほど電源に近い場所に配置されるべきではありませんでした。 PCBの最悪の敵である熱 コンポーネントは余分な熱で壊れたり仕様外の動作をしたりすることは誰もが知っていますが、いつ熱が問題になるかわかりません。場合によっては、熱管理のトラブルシューティングは特に難しく、稀な状況でのみ問題になることがあります。例えば、高温が発生する場合があります。さらに、放熱の問題は、度重なる熱サイクルで熱膨張や熱収縮が起きたために割れたはんだ接合のように、経時的に発生する可能性があります。これらの放熱の問題は試験で見逃される可能性があります。したがって、このようなシナリオを避けるため、適切に基板をレイアウトすることが重要です。 PCBにコンポーネントを配置する前に外部熱源の位置を考慮する PCB設計者はどうすべきか PCB設計では、 SMTヒートシンク 、ファン、サーマルビア、その他の技術を使って、熱を緩和するのが一般的です。これらの方法はとても効果的ですが、設計のコストと複雑さが増します。最も安価で最も信頼性の高い対策は、好ましくない外部熱源からの熱伝導が問題にならないようにPCBを設計することです。問題を回避する設計をしましょう。問題箇所にコンポーネントを配置しないことです。 設計を考えるとき、PCBはより大きいシステムの一部であることを忘れないでください。PCB上で、相互に関連する発熱部品どうしの配置や、製品全体の他の部分と関連する発熱部品の配置を考慮する必要があります。PCBは、それが設計されるデバイスによって異なるので、外部熱源は基板の周りに3次元的に配置される可能性があります。このことを念頭に置いて、以下の点を考慮する必要があります。 熱源の隔離: 電源など、発熱するサブシステムをレイアウト内で隔離し、他のコンポーネントに影響を与えないようにします。 他のPCB: 近くのPCBに、発熱するコンポーネントまたは熱に弱いコンポーネントが含まれている可能性が十分にあります。 物理的な部品: 機械部品、配線、および取付けフレームが、PCBから熱を吸収したり製品の他の部品に熱を伝達したりすることがあります。これには、ユーザーが接触する可能性のある部品が含まれます。 筐体: 設計者として、製品をより小さくコンパクトにするプレッシャーが常にあります。つまり、PCBの周りの筐体がますます窮屈になっています。このことが、PCBからの熱伝導にどのように影響するかを注意深く検討する必要があります。空間が狭くなるほど、対流による冷却機会は減り、熱に敏感な他の場所への熱伝導の機会が増加します。 PCBの筐体のサイズを考慮しましょう。基板をどのようにレイアウトするかに影響する可能性があります。
記事を読む
Pagination
First page
« First
Previous page
‹‹
ページ
158
現在のページ
159
ページ
160
ページ
161
ページ
162
ページ
163
Next page
››
Last page
Last »