PCB設計

業界をリードする専門家によるPCB設計の最新情報をご覧ください。

Filter
見つかりました
Sort by
役割
ソフトウェア
コンテンツタイプ
適用
フィルターをクリア
要件文書による電子部品の調達 要件ドキュメントを用いた電子部品調達の改善 1 min Blog PCB設計者 購買・調達マネージャー 製造技術者 PCB設計者 PCB設計者 購買・調達マネージャー 購買・調達マネージャー 製造技術者 製造技術者 電子機器の製造において、プリント基板のための部品調達は、プロジェクトの成功に大きく影響を与える重要な作業です。 要件文書アプリケーションを使用することは、このプロセスを効率化する最も効果的な方法の一つです。これらのツールを使用することで、PCBデザイナーは、PCB設計ファイル内の特定の部品に添付できる詳細な設計要件を作成できます。この記事では、そのようなアプリケーションを使用する利点と、電子部品調達を強化する方法について探ります。 PCB設計における要件文書の役割 要件文書は、PCBプロジェクトのための設計図として機能し、部品が満たすべき仕様や基準を概説します。この文書には、電気的特性、物理的寸法、環境耐性、業界基準への準拠など、幅広い基準が含まれることがあります。 要件を明確に定義することで、デザイナーは選択した部品が最終製品内で正しく機能することを保証できます。 要件文書アプリケーションの主な利点 精度と一貫性の向上 要件文書化アプリケーションを使用する主な利点の一つは、提供される精度と一貫性の向上です。 PCB設計ファイル内の個々のコンポーネントに特定の要件を添付することにより、設計者はすべてのチームメンバーが同じ情報を使用していることを確認できます。これにより、誤解や誤解から生じる可能性のあるエラーや不一致のリスクが軽減されます。 さらに、これらのアプリケーションは、複雑なプロジェクトに取り組んでいる大規模なチームにとって重要な、すべての設計要件のための単一の情報源を維持するのに役立ちます。この集中化されたアプローチは、要件への更新や変更がプロジェクト全体に即座に反映されることを保証し、コストのかかる間違いにつながる可能性のある不一致を防ぎます。さらに、これらのアプリケーション内で標準化されたテンプレートやチェックリストを使用することで、各コンポーネントに対して考慮され、文書化されるべきすべての必要な基準が確実に満たされることにより、一貫性をさらに高めることができます。 コンポーネント選択の合理化 要件文書化アプリケーションは、コンポーネント選択プロセスを大幅に合理化することができます。コンポーネントが満たすべき基準を明確に定義することで、これらのツールは設計者がサプライヤーから適切なコンポーネントを特定するのを容易にします。これにより、設計者は選択肢を迅速に絞り込み、特定のニーズを満たすコンポーネントに焦点を当てることができ、貴重な時間とリソースを節約できます。 さらに、これらのアプリケーションは、コンポーネントデータベースやサプライヤーカタログと統合することが多く、設計者がアプリケーション内で直接、要件に合致するコンポーネントを検索できるようになります。この統合により、リアルタイムの在庫情報や価格情報を提供でき、設計者が迅速に情報に基づいた決定を下すことを可能にします。さらに、一部のアプリケーションでは、高度なフィルタリングやソート機能を提供し、事前に定義された基準に基づいて最も適したコンポーネントを強調表示することで、選択プロセスをさらに迅速化できます。 サプライヤーとのコミュニケーションの改善 成功したコンポーネント調達には、サプライヤーとの効果的なコミュニケーションが不可欠です。要件文書化アプリケーションは、必要なコンポーネントの明確で詳細な仕様を提供することで、これを容易にします。サプライヤーはこの情報を使用して正確な見積もりを提供し、要求された基準を満たすコンポーネントを提供していることを保証できます。これにより、遅延を避け、プロジェクトがスケジュール通りに進むことを確実にするのに役立ちます。 詳細な仕様を提供するだけでなく、これらのアプリケーションは、包括的な見積もり依頼(RFQ)文書の作成もサポートできます。これらのRFQには、関連するすべての要件と基準が含まれており、サプライヤーが必要なものを完全に理解できるようにします。さらに、一部のアプリケーションでは、設計者とサプライヤーがプラットフォーム内で直接コミュニケーションを取ることができるコラボレーション機能を提供し、情報の交換を合理化し、誤解の可能性を減らします。 自動要件チェック 多くの要件文書化アプリケーションは、自動要件チェックを提供しており、これによりコンポーネント調達プロセスの効率をさらに向上させることができます。これらのツールは、コンポーネントが指定された要件を満たしているかを自動的に検証し、手動でのチェックの必要性を減らし、エラーのリスクを最小限に抑えることができます。これは、手動でのチェックが時間がかかり、間違いが発生しやすい複雑な要件を持つ大規模プロジェクトに特に有用です。 自動要件チェックには、業界標準や規制要件に対する検証も含まれることがあり、選択されたすべてのコンポーネントが必要なガイドラインに準拠していることを保証します。この機能は、プロジェクトの遅延や追加コストにつながる可能性のある非遵守問題のリスクを大幅に減らすことができます。さらに、自動チェックは設計プロセス全体を通じて継続的に実行され、設計が進化するにつれてすべてのコンポーネントが引き続き準拠していることを継続的に保証します。 手動レビューとマーキング 記事を読む
高速PCBでACカップリングコンデンサを使用する方法 高速PCBでACカップリングコンデンサを使用する方法 1 min Blog 電気技術者 電気技術者 電気技術者 高速インターフェース、例えばSFPコネクタのTXおよびRXライン、PCIeレーン、メディア独立インターフェース(MII)ルーティングでは、ドライブコンポーネントと受信コンポーネントの間にACカップリングキャパシタを使用します。ACカップリングキャパシタは単純な機能を果たします:差動信号からDCバイアスを取り除き、受信側で感知される差動電圧が特定の範囲内になるようにします。受信側は、そのオンチップまたは外部終端回路の一部として、受信した差動信号に自身のDCバイアスオフセットを復元できます。これは、DCカップリングがマッチした抵抗器を使用し、回路の各側がDCバイアスを必要とするものの、受信チップ上でバイアスを内部的に設定するメカニズムがない場合と異なります。 ACカップリングキャパシタに関する大きな議論と、それらを高速チャネルでどのように使用すべきかについては、2つの領域に分かれます: キャパシタはどこに配置すべきか?ドライバーに近い場所、受信側に近い場所、または配置は重要ではないのか? キャパシタの下にグラウンドカットアウトを配置すべきか?これはスタックアップ全体を通過し、他のすべての信号に対するルーティングキープアウトとして機能すべきか? この記事では、これらの点について調査します。私の立場は明確であり、この問題について語った他のSI専門家と一致しています。リンクの両端の終端がチャネル帯域幅内にある場合、ACカップリングコンデンサの位置は重要ではないはずです。もちろん、リンクの両端の終端品質にはわずかな偏差があり、終端は決して目標インピーダンスで完璧ではないため、実際のチャネルではこの振る舞いからわずかに逸脱する可能性があります。 ACカップリングコンデンサの選択 差動伝送線路に配置されたACカップリングコンデンサは、周波数の関数としてインピーダンスの不連続のように見えます。非常に低い周波数では、ACカップリングコンデンサは非常に大きなインピーダンスを示し、信号の低周波成分をブロックします。非常に高い周波数では、ACカップリングコンデンサは信号に対して透明であるように見え、ACカップリングコンデンサを通して見た入力インピーダンスは伝送線路のインピーダンスのように見えます。コンデンサのパッドやコンデンサのESL値からの他の寄生要素を除けば、ACカップリングコンデンサは非常に高い周波数で最大の信号を通過させると期待されます。 これにより、AC結合された差動チャネルで有効ないくつかのシンプルなコンデンサ選択および配置ガイドラインが提示されます: 差動ペアに沿ってキャパシタを対称的に配置し、必要に応じてトレースをパッケージにファンアウトさせてください。 トレースの幅を超えないパッケージサイズとフットプリントを選択してください。 小さいパッケージサイズを好むと、ESL値が低くなります。 典型的なキャパシタの値は10 nFまたは100 nFです。 次に、配置ガイドラインを見て、その指導が文脈化できるかどうかを確認しましょう。 ACカップリングキャパシタの位置 上記の要因はACカップリングキャパシタの選択に対処していますが、キャパシタを配置すべき場所については対処していません。この点に関するガイダンスも半導体メーカーによって大きく異なり、専門家からのガイダンスはしばしば文脈を欠いています。これらのキャパシタをどこに配置すべきかを見るために、ドライバー、レシーバー、またはその間のどこかにこれらのコンポーネントを配置する決定をサポートするかもしれないテストデータとシミュレーションデータを見てみましょう。 ACカップリングキャパシタのテストデータ まず、ドライバーとレシーバーの両方にACカップリングキャパシタを使用する差動チャネルでのアイダイアグラムを示すテストデータを見てみましょう。以下の画像は、 EverExceedが提供したテストデータを示しており、このテストデータはアイダイアグラムを使用して二つの状況を比較しています。各ケースで、ACカップリングキャパシタは4.1インチのインターコネクトに沿って配置され、ドライバーまたはレシーバーからそれぞれ100ミルの位置にACカップリングキャパシタが配置されました。 記事を読む
ADのWB Altium Designerにおけるワイヤーボンディング 1 min Blog PCB設計者 PCB設計者 PCB設計者 はじめに ワイヤーボンディング技術は年々進化しており、その使用例や応用分野も広がっています。デバイスがよりコンパクトでパワフルになるにつれて、設計者は複雑なインターコネクトを扱うための正確なツールが必要とされ、Altium Designerは、チップ・オン・ボード(COB)設計やキャビティ内のスタックダイ、その他の高性能アプリケーションでのワイヤーボンディングを効率化する機能を提供しています。この記事では、Altium Designerの高度なワイヤーボンディング機能と、それが信頼性をどのように保証するかについて探ります。 Altium Designerにおける高度なワイヤーボンディング技術 Altium Designerのワイヤーボンディングツールは、新しい機能の範囲を提供し、PCB設計に高度なボンディング技術を取り入れることを容易にしています。いくつかの注目すべき機能を見てみましょう: キャビティ内のスタックダイ用ワイヤーボンディング:ユーザーは、キャビティ構造内のスタックダイに必要な複雑なインターコネクトを簡単に扱うことができるようになりました。これは3D集積回路としても知られています。レイヤースタックマネージャーのリジッド&フレックスアドバンスドモードを利用することで、ダイ構造とダイパッドを簡単に描画し、異なるスタックアップに配置して3D構造を作成することができます。Altium Designerの3Dビューでのワイヤーボンドの可視化機能により、設計者はワイヤーボンドのループ高さ、長さ、直径、およびパスが設計の電気的および機械的要件に最適化されていることを確認できます。これらの3Dビジュアライゼーションは、高度なコンピューティングおよびモバイルデバイスで使用されるスタックダイ構造の典型的な細ピッチおよび高ピン数を管理する際に重要です。 キャビティ内のスタックダイワイヤーボンディング(3D集積回路) ダイ間ワイヤーボンディング:Altium Designerのワイヤーボンディングツールは、ダイ間ワイヤーボンディングを可能にします。これは、寄生インダクタンスと信号干渉を最小限に抑えるために使用される技術です。複数のダイを中間のフィンガーパッドや銅の流れなしで直接ワイヤーボンドで接続することができ、ループ長を短縮し、高周波および高電力アプリケーションの性能を最適化します。 ダイ間ワイヤーボンディング ダイから銅プールへのワイヤーボンディング:多くのパワーエレクトロニクスや高電流アプリケーションでは、ダイを直接銅プールに接続することが、効果的な熱および電気性能を実現するために不可欠です。Altium Designerのワイヤーボンディングツールは、PCB上のダイと銅プールエリアとの間の正確なワイヤーボンディングを可能にすることでこれをサポートします。この方法は、熱の放散と電流処理能力が重要なパワーマネジメントモジュールなどの高電力設計に特に有用です。大きな銅プールに直接ボンドワイヤーを接続することを可能にすることで、設計者は電気および熱性能が最適化され、追加のインターコネクトやビアの必要性を減らすことができます。 銅プール上の複数のワイヤーボンド 同じダイパッドのための複数のワイヤーボンド:Altium Designerのワイヤーボンディングツールは、電流運搬能力を高め、インピーダンスを減少させるために、同じダイパッドからの複数のワイヤーボンドもサポートします。この技術は、ダイを通じてより高い電流が流れるパワーエレクトロニクスや高性能アプリケーションにおいて特に重要であり、電気負荷を分散させるために追加のワイヤーボンドが必要になります。複数のワイヤーボンドは、個々のワイヤーボンドにかかるストレスを減少させることで機械的信頼性も向上させ、高ストレス環境での熱および電気性能を強化します。 パッドの整列と向き:成功したワイヤーボンディングプロセスには、適切なパッドの整列と向きが不可欠です。Altium 記事を読む
WB 記事 1 ワイヤーボンディング:現代の応用、技術トレンド、およびコストに関する考慮事項 1 min Blog PCB設計者 PCB設計者 PCB設計者 はじめに ワイヤーボンディングは、半導体ダイをパッケージリードフレームや回路基板に接続するための主要な方法として長らく支配的であり、特にチップ・オン・ボード(COB)技術では、ダイが直接PCB上に搭載される場合に多く用いられています。ワイヤーボンディングによるCOBは、その信頼性と大量生産におけるコスト効率の高さから、電卓や初期のデジタルデバイスなどの消費電子製品で人気を博しました。 時間が経つにつれて、ワイヤーボンディングCOBは、小型化と高性能化の要求に応えるために進化し、パワーLED、イメージセンサー、パワーエレクトロニクス、高性能コンピューティングなどのアプリケーションで重要な技術となりました。今日では、ワイヤーボンディングはマイクロエレクトロニクス業界における第一レベルの接続の75-80%を占め、コンパクトで高性能な設計において信頼性の高い接続を提供しています。 電子機器におけるワイヤーボンディングの現代的な応用 ワイヤーボンディングは、幅広い現代のアプリケーションで使用されており、柔軟性、信頼性、コスト効率を提供します。主な分野には以下のようなものがあります: 3D集積回路(IC):3D ICでは、複数の半導体ダイが垂直に積み重ねられており、これらの層を接続するためにワイヤーボンディングが不可欠です。デバイスがよりコンパクトになるにつれて、高密度処理能力への需要が高まり、細かいピッチと高いピン数を管理するためにワイヤーボンディングが不可欠になっています。この技術は、高性能コンピューティング、先進的なモバイルデバイス、高密度デジタル電子機器にとって重要です。 ワイヤーボンドを使用した3D積層ダイ パワーエレクトロニクスとワイドバンドギャップ半導体:電気自動車や再生可能エネルギーシステムなどの高電力アプリケーションで使用されるシリコンカーバイド(SiC)や窒化ガリウム(GaN)などのワイドバンドギャップ半導体のパッケージングには、ワイヤーボンディングが不可欠です。これらの半導体は高電圧と高温で動作し、より高い電流負荷を処理し、効率的な電力管理を確保するために、しばしば太いゲージの銅ワイヤーボンディングが使用されます。 ワイヤーボンディングされたパワーモジュール(画像出典:Electronics Weekly, “Powering UP”, 2022年4月 光電子工学とイメージセンサー:イメージセンサーの解像度が高くなると、必要な接続数が劇的に増加し、細いワイヤーボンディングが不可欠になります。これらの高性能、高密度設計は、先進的な消費者向け電子機器、医療診断、セキュリティシステムにとって重要です。 CMOSイメージセンサーCOBとワイヤーボンド【画像出典:アルバータ大学、Sensors 2011に掲載】 チップ・オン・ボード(COB)LED: COB技術はLED設計で広く使用されており、より高いルーメン密度と改善された熱管理を提供します。ワイヤーボンディングにより、効率的な熱放散を持つコンパクトなLEDアレイが可能になり、自動車、産業、消費者向けアプリケーションでより明るく長持ちする照明ソリューションにつながります。 COB 記事を読む