Skip to main content
Mobile menu
PCB設計
Altium Designer
世界中の設計者に支持される回路・基板設計ソフトウェア
CircuitStudio
エントリーレベルでプロ仕様のPCB設計ツール
CircuitMaker
個人、オープンソース、非営利団体のための無料PCB設計ツール
Altiumに乗り換える理由
他のPCB設計ツールからAltiumに乗り換える理由と方法を確認する
ソリューション
Altium Enterprise ソリューション
デジタルトランスフォメーションへの 最終ステップ
電子部品プラットフォーム
世界中の技術者が利用するOctopart
Altium 365
リソース&サポート
製品情報
無償評価版
ダウンロード
拡張機能
リソース&サポート
Renesas / Altium CEO Letter To Customers
全てのリソース
サポートセンター
マニュアル
Webセミナー
コミュニティ
フォーラム
バグの報告
アイディア
教育
専門家育成トレーニング 資格取得プログラム
Comprehensive Career Training for Altium Software and Design Tools
大学・高専
Academic Licenses, Training, Sponsorships and Certificates for Higher Education
オンラインストア
Search Open
Search
Search Close
サインイン
シグナルインテグリティ
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
無料トライアル
SPICE: Certainty for All Decisions
Design, validate, and verify the most advanced schematics.
Learn More
シグナルインテグリティ
Highlights
All Content
Filter
Clear
Tags by Type
全て
ニュースレター
OnTrack
ビデオ
Popular Topics
全て
高密度配線(HDI)設計
高速設計
シグナルインテグリティ
PCB配線
Software
全て
Altium Designer
Thought Leadership
PCB ルーティングのヒント: BGA ファンアウトオプションをナビゲートします
トムは会社で順調に昇進し、新しい副社長になりました。彼は一生懸命働き、関係を築き、会社についての知識を着実に構築してきました。残念ながら、トムはアクロニム病という深刻な病気にかかり、それが会社の重要部門に疫病のように広がりました。トムはどんなに努力しても、アクロニムを使わずにはいられませんでした。時には、彼の妻が彼が眠っている間にアクロニムで話しているのを聞くことがありました。 残念ながら、アクロニム病の唯一知られている治療法は、1800年代半ばに旅行する詐欺師が販売していた、あいまいなエリクサーです。そのエリクサーは、見た目、一貫性、そして味が小川の水と同じでしたが、「CMRがTPSによって提供されるDERについて、FERC、NERC、RTOs、ISOsによって研究されている」と説明するあらゆる男性、女性、または子供を治すことができました。 アクロニムは死なない — ただゆっくりと消えていくだけ PCBアセンブリの世界には、確かに略語の不足はありません。ボールグリッドアレイ(BGA)は、PCBデザイナーが集積回路への高密度接続を容易にルーティングできるようにします。表面実装技術(SMT)チップパッケージの下側が接続性を確立し、アレイの上側がフィールドプログラマブルゲートアレイ(FPGA)、アプリケーション特定集積回路(ASIC)、マイクロコントローラ、100ピン以上を持つマイクロプロセッサなどの集積回路(IC)にとって使いやすいパッケージを提供します。パッケージの底部にグリッドパターンで配置された各ピンは、はんだのボールを持つパッドを持ち、これがプリント回路基板内の対応する銅パッドに電気的接続を作り出します。ボールグリッドアレイは、デバイス内のリード長が短いため、低リードインダクタンスを持っています。 BGAは、クアッドフラットパックスタイルのパッケージの下だけでなく、BGAパッケージの周りにも接続を可能にすることでスペースを節約します。SMT技術が改善されるにつれて、メーカーはより良い熱的および電気的特性を持つさまざまなタイプのボールグリッドアレイを生産しています: BGAタイプ BGA略語 BGAコンポーネント特性 成形アレイプロセスボールグリッドアレイ MAPBGA 低コスト 低~中性能デバイス 低インダクタンス 簡単な表面実装 小さなフットプリント プラスチック・ボール・グリッド・アレイ PBGA 低コスト
Thought Leadership
TRANSLATE:
PCB設計における伝送線路遅延計算器
伝送線路は、現代生活を可能にする、見かけによらず複雑なものの一つです。単なる金属ケーブルのように見えるものが、実際には精密に設計されたシステムです。PCB上のトレースも同様で、電子デバイスに電力を供給する血管のようなものです。 では、伝送線路とは何でしょうか?この用語は、PCB上のトレースと民間の電力線との類似を示すために最初に採用されました。しかし、「伝送線路」という言葉は、あまり文脈を伴わずに使われがちです。PCB上の全てのトレースが伝送線路というわけではなく、伝送線路の設計ルールは場合によって重要になります。 私のトレースは伝送線路ですか? 「伝送線路」という用語は、PCB上のトレースの構造ではなく、振る舞いに関するものです。特定の条件下ではトレースが伝送線路として振る舞い、他の条件では単なる導体として振る舞うことがあります。 トレースが伝送線路のように振る舞うかどうかは、信号がトレースを伝わるのにかかる時間によって決まります。この時間は、 伝搬遅延、または伝送遅延と呼ばれ、これらの用語は互換性を持って使用されます。 トレース内の遅延が、トレース上を移動するデジタル信号の立ち上がり時間よりもはるかに長い場合、そのトレースは伝送線として機能します。アナログ信号の場合、立ち上がり時間は信号の振動周期の4分の1とされます。どちらの場合も、トレースと両端のコンポーネントは、さまざまな信号整合性の問題を防ぐためにインピーダンスが一致している必要があります。 電気伝送線 オンライン伝送線計算機 特定のインピーダンス値を持つようにトレースを設計する簡単で手っ取り早い方法が必要な場合、オンライン伝送線計算機を使用できます。このツールは、ユニット長さなど、マイクロストリップ、埋め込みマイクロストリップ、ストリップライントレースなど、異なる配置のトレースを説明するいくつかの重要なパラメータを計算できます。 気づくことの一つは、ほとんどのオンライン伝送線計算機が、伝送線インピーダンスの周波数依存性を完全に無視していることです。実際には、周波数による効果があり、その効果はシステム内の抵抗、容量、インダクタンス、導電性によってより顕著になります。 低周波数信号によって遭遇されるインピーダンスは、高周波数でのインピーダンスよりも周波数変化に対して敏感である傾向があります。オンラインの伝送線計算機は常に低周波数でのインピーダンスを探ることを許可しているわけではなく、一般的に高周波数で作業していると仮定します。 非常に高い周波数、RFアプリケーションで使用されるような周波数では、この周波数依存性は一定値に飽和します。そのため、ほとんどのオンライン計算機は、この依存性を無視できるほど十分に高い周波数で作業していると仮定します。 伝送線計算機からの重要な出力は、有効誘電率定数です。このパラメーターは、トレースの寸法と導体と基板の誘電率定数の対比に依存します。このパラメーターは、光ファイバー光学における有効屈折率と同じ役割を果たし、信号が伝送線をどれだけ速く伝播するかを決定します。 ここでオンライン伝送線計算機も役立ちます。有効誘電率定数を得たら、それを使用してトレースのライン遅延を計算できます。ライン遅延を計算し、それを信号の立ち上がり時間と比較した後、トレースが実際に伝送線として振る舞っているかどうかの答えが得られます。 計算機を使った電子設計 SPICEシミュレーションと伝送線 SPICEシミュレータは、特に高速、高周波、 HDI、低電流アプリケーションにおいて、PCBの信号整合性の問題を調査するのに役立ちます。すべてのSPICEシミュレーションが直接に伝送線のインピーダンス値を返すわけではありませんが、トレースとコンポーネント間のインピーダンスの不一致から生じる信号整合性の問題を診断することを可能にします。オンラインおよびデスクトップの設計ソフトウェアパッケージは、SPICEシミュレーションへのアクセスを提供します。 すべてのPCBは、基板の誘電体によって金属要素が分離されるため、ある程度の寄生容量と寄生インダクタンスを持っています。SPICEシミュレーションを使用する際には、寄生インピーダンスの影響をモデル化するために、等価回路モデルに直列および並列の位置にキャパシタとインダクタを追加する必要があります。
高速PCB設計解析: シミュレーションとシグナルインテグリティ解析
夏の終わりが近づくと、私は家族を集め、魔法をかけられたようなワクワク感を求めてステートフェアに向かいます。フェアが開催される場所は、普段は人けがなく、荒れ果てた風景の中、小さなほこりのかたまりが風に吹き飛ばされていきます。ところがフェアが始まると、そこは活気に満ちあふれます。ゾウの耳がついたブース、動物や実演を見せる建物、大声で叫ぶ子供たちを乗せた娯楽用の乗り物などが並びます。それは、全ての部分が動く、ジャグリングのような曲芸的状況です。 高速信号に対応したPCBの組み立てには、設計、コンポーネント、高速信号を扱うジャグリングのような部分があります。これらの高速信号には、不要な伝送線路が回路基板に大混乱を引き起こす可能性があります。混乱の多くはPCBレイアウト自体で発生します。 レイアウトのどの部分がこのような混乱をもたらすかを把握しておくと、基板をレイアウトしながら問題を解決できます。適用したレイアウト手法がシグナルインテグリティにとって最適かどうかは、膨大な量の計算が必要な手間のかかる解析を行うか、シグナルインテグリティシミュレーションツールを使用することで明らかにできます。この記事をお読みいただいた後、ご自分の基板にとってどちらがより効果的かを判断してください。 不十分なシグナルインテグリティシミュレーションツール シグナルインテグリティシミュレーションツールが不十分だと、魔法はカオスと化します。インピーダンス計算機能は誤った計算結果を返します。計算は、レイヤのスタックアップやPCBデザインルールで定義された材料の誘電率と矛盾します。シミュレータはモデリングのリターンパスを前提とするので、GNDプレーンに不連続な部分があると、計算から除外されます。3Dフィールドソルバーは、完全に誤った差動ペアのインピーダンスを算出して返します。 ツールは単純で、デザインルールを考慮したPCBレイアウトのお決まりのオプションに対応していません。このツールには、リジッドフレキシブルのルールとシミュレーションが含まれています。そのシミュレーション環境では、波形が生成されますが、わかりにくいものになっています。さらに詳しく調べるには、複雑なコマンドを手動で実行して、普通の状態の値を求める必要があります。これは、3Dフィールドソルバーでも同様です。電気的に長いトレースの解析で一般的な選択項目がユーザーインターフェースに含まれていないので、自信を持って 高速シグナルインテグリティの回路基板をレイアウトすることができません。 インテリジェントなEDAツールによる知力の上手な活用 結果を解釈する時間の浪費 明らかなエラーを解析するためにシミュレーションツールの結果を調べると、何時間もかかります。メニューを使った移動は、慎重な操作が必要です。インピーダンス計算機能をあれこれ操作して、トレースのインピーダンスの計算に誤ったパラメーターが使用されたことを明らかにしようとして、無駄な時間がかかります。シミュレーションに使用されたパラメータが、PCBレイアウトのルールセットと一致しないことを発見しようとして、時間を取られます。誰がそんなことを予想したでしょうか? 面状材料の固有の電気容量と誘電率の正しいパラメータがないと、算出されたインピーダンスが高速信号の反射や リンギングを本当に抑えるかどうかを確信できません。 シミュレーションは、ドリルファイルの不足など、周囲のちょっとした異常により失敗します。シミュレーションのセットアップにさまざまなPCBエディタと設定が必要であることを考えると、ドリルファイルの不足によって生じる失敗は、セットアッププロセスに混乱をもたらします。エディタおよび設定メニューに与えられる、選択したパラメータを何度も尋ねることになります。 シグナルインテグリティの高速信号をシミュレーションするツールを分析していると、ヘルプページやアプリケーションノートの検索でより多くの時間を無駄に使います。最終的に、シミュレーションの結果を示す波形ができあがっても、不要なデータが表示されることが多々あります。手元に強力なツールがあっても、自分の回路基板について適切にガイドしてくれる使いやすいユーザインターフェースがなければイライラが募ります。最終的に整合性がどうなるかはわかりません。 整合性の問題を特定して解消する優れたツール PCBデザインルールで設定されている材料パラメータを、ツールのインピーダンス計算機能で使用できたら、すばらしいと思いませんか? インピーダンスを計算するため、デザインルール全体にツールポート情報が格納されていれば、回路設計に基づいて正しいコンポーネントとレイアウトが実装されたプリント回路基板が、製造業者から戻ってくることを確信できます。 シミュレーションに PCBのデザインルールのパラメータを使用すると、信頼できる結果になります。波形を表示して、回路設計とPCBレイアウトの両方のシミュレーション結果を示すことで、技術者とレイアウト設計者がシグナルインテグリティの問題と解決に対応しながら設計を作り込んでいくことができます。これにより、解析を実行し、手作業で得たベストプラクティスを適用し、PCBの製造を待ってシグナルインテグリティを検証するという推測に基づく作業がなくなります。 Altium
シグナルインテグリティーの問題を最小限に抑えるグランドバウンス低減方法
学生時代にバスケットボールチームで活躍した父とは異なり、私は入団テスト中、ボールをほとんどバウンドできませんでした。言うまでもなく、私はスポーツを始める前にやめてしまいました。NBAプロになるという夢は打ち砕かれましたが、その後、格闘技への情熱を見出しました。私はバスケットボールをうまく扱うことはできませんでしたが、少なくとも格闘技では足の甲で相手を跳ね返して(バウンスして)対抗することができました。 バスケットボールをバウンドできなくても大きな問題にはなりませんが、電子機器のグランドバウンスを理解していないと、回路にとって大きな問題になりかねません。信頼できるPCBレイアウトエンジニアとして優れた能力を発揮するには、回路およびシグナルインテグリティーへのグランドバウンスの影響に関する知識が必要です。グランドバウンス低減技術を考慮すれば、設計全体でPCBのシグナルインテグリティーのグランドバウンスを最小限に抑えることができます。 グランドバウンスとは グランドバウンスを理解するには、集積回路(IC)の中核を形成するスリープトランジスタとGNDピンの基本を詳しく理解する必要があります。下図は、マイクロコントローラーやランダムアクセスメモリ(RAM)などのICの典型的なI/Oを形成するCMOSバッファ回路を示しています。 PCB内のグランドバウンスノイズは測定が難しい問題であり、これがパワーゲーティングとシグナルインテグリティーに与える影響は、PCBのトレースインピーダンスとPDNインピーダンスに関連しています。ほとんどの高速設計では、ドライバー回路の出力ピンは通常、ある程度の入力容量を持つ負荷に接続されます。出力ピンが論理回路「1」にアサートされると、負荷の寄生容量はVCCまで完全に充電されます。出力バッファ回路がオフになって論理「0」になると、容量性負荷が放電して、ドライバーに突入電流が戻ります。この急速な電流はドライバーのグランドピンを流れます。 理想的な状況では、ICパッケージと基板の接地は同じ電圧に保たれます。ただし、現実の設計では、ボンドワイヤ、リードフレーム、PDNの寄生インダクタンスにより、ダイグランドと基板グランドの間にある程度の寄生インダクタンスが存在します。これらの素子からのパッケージの総インダクタンスは、上記の回路図に示すように、一連の直列コイルとしてモデル化できます。 電流がボンドワイヤ/リードフレーム/PDN上の インダクタンスを駆け抜けると、ダイグランドと基板グランドの間に逆起電力が蓄積します。これにより、ダイグランドと基板グランドの電圧レベルが瞬間的に異なる現象が生じ、グランドバウンスノイズが発生します。この蓄積は、これらの要素のDC抵抗とICパッケージ/ダイの寄生によって減衰されます。寄生とトレースのこの配置が、定義されたインピーダンスと共振周波数を持つ等価RLC回路を形成しているということを理解すると、これが信号の動作にどのように影響するかを正確に理解できます。 PCBのグランドバウンスが回路と信号に与える影響 PCB内のグランドバウンスが最小限であれば、ダイグランドや信号の動作に混乱を引き起こすことはありません。グランドバウンスは引き続き発生しますが、気付かれないほど小さいかもしれません。ただし、グランドバウンスによって生成される逆起電力が大きい場合、特に複数の出力が同時に切り替えられる場合、デバイスのグランドレベルは、ICの他のピングループに影響しうるレベルにまで上昇します。 駆動コンポーネントを容量性負荷に接続するトレースを見ると、トレースのインダクタンスと静電容量も、グランドバウンスによる信号への影響に影響を与えます。すべてのトレースには、寄生容量とインダクタンスにより、ある程度のインピーダンスがあることに留意してください。実際のトレースにはこれらの寄生があるため、トレース、ドライバーのGNDピンのインダクタンス、および負荷容量によって形成される集中RLCネットワークにこれらを含める必要があります。 ダイ上のレベルシフト たとえば、グランドバウンスが発生するマイクロコントローラーでは、パワーレールと接地間で測定された電圧が、グランドバウンスがない場合よりも1.5V高くなるようにグランド電位がシフトする場合があります。つまり、パワーレールとダイグランドの電位差は、パワーレールと基板グランド間で測定された電位よりも1.5V高くなります。別の言い方をすれば、ダイグランドとPCBのGNDプレーンの間には瞬間的な1.5Vの電位があります(つまり、ドライバーのGNDピンの両端で測定)。 この例では、マイクロコントローラーに接続された3.3Vで動作する論理ICは、デバイスの接地の電位レベルがシフトしたために1.5Vの論理「低」信号を受信しているため、論理「0」信号を「1」と解釈する場合があります。この例を続けて説明すると、入力電圧レベルはダイグランドを基準にして見られるため、グランドバウンスが発生しているデバイスは他のコンポーネントからの入力を誤って読み取る可能性もあります。たとえば、論理「高」 信号が「低」と誤って解釈されるのは、ダイグランドの上昇により、入力ピンの電圧が3.3Vではなく1.8Vになるためです。これは、最小論理高電圧の2.31Vを下回ります。 グランドバウンスの影響は、すべての出力が同時に低になると最悪になります(上の画像を参照)。このとき、ダイグランドの電圧差が大幅に増加します。さらに、このレベルシフトはRLCネットワークで急な立ち上がり信号のように機能し、特定の条件下では減衰不足の過渡発振を示す可能性があります。 レベルシフト時の発振 ダイグランドのレベルシフトは永久に持続するわけではなく、ダイグランドとPCBグランドの電位差は最終的にゼロに戻ります。トレースと負荷から寄生容量が生じるため、このレベルシフトは、RLC回路で見られるのと同じように減衰発振を示す可能性があります。これらの発振は、電流ループ内の総抵抗に応じてさまざまなレベルの減衰を示すことがあります。ダイグランドに発振があると、この発振が出力信号に重畳され、過渡リンギング現象が発生します。下の画像は、グランドバウンスによるこのような減衰不足の過渡発振を示しています。 不完全な状況では、ドライバーの出力インピーダンスはゼロで、負荷入力インピーダンスは無限大で、トレースに発生する過渡現象の減衰はゼロになります。実際の状況では、ドライバーを通る直流伝導と、LOW状態とHIGH状態でのインピーダンスにより、減衰はゼロ以外になります。減衰( R/2
高速PCB設計入門: クロストークの除去方法
最近、結婚披露宴で、同じテーブルに座っている男性と話をしようとしました。残念なことに、私たちの間に座っていた女性が、私の反対側に座っている人と会話を続けていました。披露宴の騒音を背景に会話することは、何より難しいことでした。私たちの間でもう1つ話し合いが行われていたために、会話が成り立ちませんでした。私たちは、クロストークしていたのです! 会話中のクロストークはとても迷惑なものですが、PCBレイアウト上のクロストークは、悲惨な結果を招く可能性があります。クロストークが修正されない場合、完成した回路基板が まったく動作しないか、あるいは断続的な問題に悩まされる可能性があります。クロストークとは何か、また、それを防ぐためにできることは何かを見てみましょう。 高速PCB設計におけるクロストークとは? クロストークは、 PCB上にあるトレース間の意図しない電磁結合 です。この結合によって、物理的に互いに接触していない場合でも、一方のトレースの信号パルスがもう一方のトレースの信号を圧倒してしまう可能性があります。これは、並列トレース間の間隔が狭い場合に、発生する可能性があります。トレースが製造目的での最小間隔を維持していたとしても、電磁目的では十分ではない場合があるのです。 互いに並行に走っている2つのトレースを考えてみてください。一方のトレースの信号の振幅がもう一方のトレースよりも大きい場合、片方のトレースに積極的に影響を与えてしまう可能性があります。そして「被害者」トレースの信号は、それ自体の信号を伝導する代わりに、攻撃者トレースの特徴を模倣し始めます。これにより、クロストークが発生します。 クロストークは通常、同じ層の上で隣り合って走る2つの並列トレース間で発生すると考えられています。しかし、隣接する層の上で隣り合って走る2つの並行トレース間でクロストークが発生する可能性は、さらに大きくなります。これは、 ブロードサイド結合と呼ばれ、2つの隣接する信号層が非常に薄いコア厚で分離されているために、発生する可能性が高くなります。この厚さは4ミル(0.1ミリメートル)になることもあり、同じ層の上にある2つのトレース間の間隔よりも小さい場合があります。 クロストークを除去するためのトレース間隔は一般的に通常のトレース間隔の必要条件よりも大きい 設計からクロストークの可能性を除去 幸運なことに皆さんは、クロストークのなすがままではありません。クロストークの可能性を最小限に抑えるように基板を設計すれば、これらの問題を回避できるのです。基板上のクロストークの可能性をなくすために役立つ設計テクニックを、いくつかご紹介します。 差動ペアと他の信号配線の間の距離を、できるだけ大きく保ちます。 経験則 は、ギャップ = トレース幅の3倍です。 クロック配線と他の信号配線との差を、できるだけ大きく保ちます。ここでも、同じギャップ =
OnTrack Newsletters
Square Kilometer Array(SKA) Africaに勤務するOmer Mahgoub氏と天文学分野のPCB設計
Omer Mahgoub氏、SKA Africa Judy Warner: Omerさん、SKAとは何か、またかかわっている国やその目的について教えていください。 Omer Mahgoub: SKA(Square Kilometre Array)は、世界最大の電波望遠鏡を建設する国際的な取り組みです。1平方キロメートルの集光面積を持ち、2つの大陸(アフリカおよびオーストラリア)に設置されます。 10か国からなる組織がSKAのメンバーです。オーストラリア、カナダ、中国、インド、イタリア、ニュージーランド、南アフリカ、スウェーデン、オランダ、そしてイギリスが参加しています。 南アフリカのカルー地域 SKAを使うと、これまでにないほど詳しく宇宙を観測することができ、星や銀河がどのようにして今の形になったのか、それらが長い時間を経てどのように進化したのか、あるいはそれ以外のダークエネルギーやダークマターに関する天文学上の未解決の疑問を理解する助けとなるでしょう。 Warner: とてつもない事業ですね! 勤務先の会社名と、SKAを実現するための会社のおおよその役割を教えてください。 Mahgoub: 私は、南アフリカのSKA建設に直接責任があるSKA Africaで働いています。
Pagination
First page
« First
Previous page
‹‹
ページ
14
ページ
15
ページ
16
現在のページ
17
ページ
18
ページ
19
Next page
››
Last page
Last »
他のコンテンツを表示する