シグナルインテグリティ

リソースライブラリを参照して、PCB設計とシグナルインテグリティの詳細をご覧ください。

Filter
見つかりました
Sort by
役割
ソフトウェア
コンテンツタイプ
フィルターをクリア
1つのGND接続によって100台のMP3プレイヤーに問題が発生した理由 1つのGND接続によって100台のMP3プレイヤーに問題が発生した理由 1 min Thought Leadership テクノロジーは偉大なもので、確かに人生の特定の部分を楽にしてくれました。しかし、子育て、コーディング、電子機器の設計、そして時にはこのような記事を書いていると、最高のアプリを使用しても、日々のストレスを低減できなくなることがあります。例えば、私は今朝塩と砂糖を間違えて、子供の大好きなお粥に混ぜてしまいました。私の小さなミスにより、私の5歳の子供はGordon Ramseyと張り合えるくらい騒ぎ立ててしまいました。 同様に、ごく小さなミスにより、優れた設計が台無しになることもあります。非常に運が良ければ、そのミスは子供の癇癪に10分間付き合う程度の問題で済むかもしれません。残念ながら、PCB設計の世界では、これは数百もの欠陥のある設計を処理することになるのが普通です。私は5年前に、まさにこのような例を経験しました。小さな設計ミスのせいで、きっかり100台のカスタマイズされたMP3プレイヤーが、左チャンネルの音声に障害を持つことになってしまったのです。このミスは大きな苦痛であったため、今でも詳しい点を全て覚えています。 GNDが同じであっても異なる場合 MP3プレイヤー、またはオーディオをベースとする他のPCBプロジェクトの設計を開始する前に、何が重要なのかに集中する必要があります。そして、場合によってはこれは十分に明確ではありません。私は今朝、息子にお粥をあげることが目的だと考えていましたが、本当に肝心なのは正しい砂糖を入れることだったわけです。それと同様に、どのような種類の特化した集積回路(IC)を使用するかに気を取られていたところ、本当に決定的なのは電子回路における各種のGNDの重要性を知ることだったということが考えられます。大学の回路設計の講義では、電力GND、デジタルGND、アナログGNDについて学びます。 全てのGNDが同じではありません。 オーディオプレイヤーを設計するときは、アナログとデジタルのGNDを取り扱う必要があります。これらのGNDは回路図に、異なるシンボルで表示されますが、PCBレイアウトでは互いに接続されているように見えます。 GND配置 についてのいくつかのベストプラクティスを見ると、ほとんどの場合にこれらを単一の点、たとえばスター型GNDに接続することが推奨されています。 この助言を無視することは許されませんが、オーディオ設計の全体で最もやってはいけないことは、 単一のGNDプレーン を持つことです。オーディオGNDとデジタルGNDを単一の点で接続すると、オーディオチャンネルに干渉が起き、しかも原因がそこにあると判別するのは困難です。 私は、オーディオICをマイクロコントローラー(MCU)に接続している シリアルペリフェラルインターフェイス (SPI)の信号が干渉を引き起こしていることに気付かなければ、数万ドルの損失を引き起こし、大幅な修正を必要としたかもしれない経験があります。しかし、それに気づいても、100台のMP3プレイヤーに影響を及ぼす問題点を手作業で修正するため、私のチームは長時間の作業を余儀なくされました。 GNDの接続場所が重要な理由 この失敗から、私は電子機器の設計における最も大きな教訓の2つを得ました。まず、 テクニカルユーザーガイドは常に全部読む ことです。次に、各種のGNDプレーンをどこに接続するかは重要だということです。最初の教訓に従っていれば、この惨劇は避けられたでしょう。元の設計で私が失敗したのはこの部分です。 GNDプレーンでの失策は惨劇を招くことがあります。 記事を読む
半導体ファイバーは光ファイバーケーブル伝送ラインに置き換わるのか 半導体ファイバーは光ファイバーケーブル伝送ラインに置き換わるのか 1 min Thought Leadership インターネットは、奇妙で魅力にあふれた場所です。私が子供の頃はダイヤルアップ インターネットの末期で、チャットルームが全盛の頃でした。今では、私はたまにインターネットでいくつかのオンラインゲームを楽しんでいますが、このようなものは当時は不可能でした。私の電話ルーターや銅線によるネットワークでは、画像をロードするための帯域幅を確保するのがやっとでした。今日のネットワークは、非常に高速な光ファイバーにアップグレードされました。これらの通信システムは確かに昔の銅線によるものより優れていますが、依然としていくつかの欠点もあります。このため研究者たちは、シリカの代わりに半導体を使用する新しい種類の光ファイバーを探求してきました。この新しい種類のケーブルは、広域ネットワークとPCBの両方において、信号伝送に役立つ可能性があります。 光ファイバー 多くの人々は、インターネットのことを、雲の中かどこかに設置されていて接続可能な「何か」と考えていますが、実際にはインターネットとはコンピューターの集まりにすぎません。数百万台ものコンピューターが互いに接続されています。これらのコンピューターを互いに接続する情報ハイウェイの多くは、光ファイバーケーブルで構成されています。光ファイバーはガラスで作られており、その高速性と信号の優れた品質から、ネットワークに広く活用されてきました。しかし、光ファイバーにはいくつかの欠点があります。問題となっている主な欠点は、光回路と電気回路とを接続するため必要な機器のコストと複雑性です。 ほとんどの光ファイバーケーブルはシリカ、つまりガラスを使用して光を伝達します。光は情報を搬送するため優れており、電子的な配線よりもはるかに大きな帯域幅があります。企業は現在 40Gbpsのイーサネット を検討していますが、光ファイバーは既に 最高43Tbps の速度に達しています。また、光は ビットエラー率が低く 、電磁気的干渉に耐性があります。これらの特性から、長距離のネットワークや、速度が最重要なゲームのネットワークの伝送方式として使用されています。 自宅にファイバー接続を導入したいと思うかも知れませんが、まずは価格を調べましょう。ファイバーについての主な不満点の1つは、光信号を電気信号へ変換するため使用される回路のコストです。この理由から、収益を考えた場合に、接続ポイントが 問題点 になります。この高価な機器はさらに複雑で 電子回路との接続が困難 でもあります。この理由から、一部の研究者たちは半導体から作られた光ファイバーを開発してきました。 光ファイバーは、World Wide Webへ従来より高速に接続するため役立ってきました。 半導体の光ファイバー 記事を読む
PCBでリンギングが発生する理由とその解決方法 PCBでリンギングが発生する理由とその解決方法 1 min Thought Leadership 最初の電気工学ラボで、スイッチの出力をデバウンスするための回路を作りました。オシロスコープの画面で、最初のガタガタした信号とその後のデバウンスされた出力を見たのを覚えています。生活の中でこんなに害のないものが、そんなに 面倒になるなんて、心の底から不安に感じました。それが、信号ノイズやアーチファクトに対する苦しみの始まりにすぎないことを、1年生の私が知らなかったのは、幸運でした。リンギングは、製品性能について特にイライラさせられる効果の1つです。 リンギングとは何か? PCBや他の電子システムでは、リンギングとは、オシロスコープで見ると池の上のさざ波のように振動する電圧出力または電流出力のことです。その振動は、電源オンやスイッチ切り替えなど、入力信号の突然の変化に対する反応です。 多くの場合、振動によって出力信号は、上限と下限の両方で許容範囲を外れ、徐々に滑らかになります。振動が許容範囲内に収まるのにかかる時間を、整定時間と呼びます。 出力信号の独特の形のため、リンギングを時々「リップル」と呼びます。ただし、普通、リップルは、ACスイッチト電源を使用し、電源が、適切にまたは十分にAC波形を抑制しない場合の出力を特に指します。 リンギングの原因は? リンギングの源は、電源の他に、トレースが「長い」か短いかによって異なります。 一般的な目安では、デジタル回路で、(負荷までと戻りの)ラウンドトリップ伝搬時間が、信号立ち上がり時間と同等の場合、トレースは「長い」と考えられます。ストリップラインまたはマイクロストリップの作業をしている場合、少し複雑になるので、経路長および、リンギングなどの伝送路効果を最小化する出発点として Glen Dash のページを推奨します。 長いトレースと短いトレースに戻ります。トレースが短い場合、リンギングの原因は、寄生インダクタンスや寄生容量です。パルスまたは入力の突然の変動によって、寄生コンポーネントが、その固有振動数で共振し、出力にリンギング効果が現れます。長いトレースでは、リンギングの原因は、インピーダンスのミスマッチによる信号反射である可能性がより高くなります。 信号ノイズで、大学生の私は過度に不安を感じましたが 業界に入れば、信号ノイズが破滅的結末をもたらす場合もあります。 リンギングがシステムにどう影響するのか? ノイズの多いオシロスコープのために実存の危機に苦しむ、ということがなければ、素晴らしいことです。セラピーの費用がずっと少なくてすみます。それでも、リンギングは、あなたの人生や製品設計にネガティブな影響を及ぼす可能性があります。 EMIの増加: リンギングは、ノイズや干渉を生成する可能性があり、また、しばしば生成します。そのEMIは、基板に拡散または伝導し、さまざまな性能問題の原因となります。 電流フローの増加 記事を読む
PCB設計者のRick Hartley氏: シグナルインテグリティーと高速設計の第一人者 PCB設計者のRick Hartley氏: シグナルインテグリティーと高速設計の第一人者 1 min OnTrack 駆け出しの頃、マイラーテープを使った手作業でPCB設計進めるHartley氏 Judy Warner: まずは、ご自身の職歴とこれまでに手掛けられた製品について教えていただけますか? Rick Hartley: 私は1965年、20歳のときにエレクトロニクスの世界に入りました。最初の数年間は研究開発部門の技術者として働きながら、夜間学校に通って電気工学を学びました。それからしばらくしてフィールドサービスに異動になり、その数年後に「設計者」としてエンジニアリング部門に配属されました。当時の「設計者」は、回路そのもの以外の、回路基板、パッケージング、ワイヤーハーネス、ケーブルなど、製品に使用されるものは何でも設計していました。数年間で設計に関する十分な知識を身に付けた後は、EEとして数年間、電気回路の設計を行いました。 ある日、上司がやって来てこう言いました「君にPCB設計の経験があるのはわかっているが、実は回路基板の仕事が山積みなんだ。これからの6か月間は、回路設計と回路基板の設計を半々で進めてもらえないかい?」私は「わかりました」と答えました。そして、その6か月が過ぎて気付きました。私は回路設計よりも回路基板の設計のほうが好きだったのです。そこで私は回路設計から回路基板の設計に戻ることに決めました。これを聞いたたくさんの設計者は、私の頭が少しおかしくなったのだと考えたようです。 Rick Hartley Warner: 間違いないでしょうね!そんなふうに考える設計者はなかなかいません。 Hartley: そうですよね。彼らには「君はかなりのマゾヒストだ」と言われました。ところが、私にとっては本当に回路設計よりも回路基板の設計のほうが楽しかったのです。ですから、自分で異動を決めたのです。幸運なことに、同じ領域での異動だったため、給料は下がりませんでした。その後、別の会社に転職しましたが、ラッキーなことに引き続きEEレベルの給料をもらっていました。私にとってはよい結果になったわけです。 Warner: では、これまでにどのような製品を手掛けられましたか? Hartley: これまでに手掛けた製品ですか…駆け出しの頃は、大半が工場の床用の産業制御装置でした。製品に使われるものを制御するために閉ループフィードバックシステムを使用する装置ですが、たとえば製造中のプラスチックを測定したりしていました。樹脂と空気を混ぜる分量を制御して正しく分配されるようにし、すべての材料の厚みと混合が適切になるようにするのです。基本的には、製造されるプラスチックを測定して、その流れを制御するのが仕事でしたが、こうした作業は紙などのあらゆるものを使って進めていました。おそらく、仕事を始めてから17年間くらいはこの分野に従事していましたが、1980年代に入ってからはコンピューターの設計に移りました。 Warner: 当時のことはよく覚えています。—パソコンや周辺機器向けの電子機器が急増しましたね。 記事を読む
PCBレイアウトソフトウェア比較に最も重要な機能 PCBレイアウトソフトウェア比較に最も重要な機能 1 min Thought Leadership 掘り出し物を見つけようと思って、中古車販売店に行ったことがありますか? 整備工でもなければ、ほとんど不可能です。私の場合、値段を除いて、自分にはほとんど同じに見える2台の車から選ぶことになりました。安い方を選んで、近くの整備工場に持って行くと、ぽんこつを選んだことが分りました。PCB設計ソフトウェアを選ぶときにも、同じ気持ちになることがあります。無料のプログラムを使用して、または中級のプログラムを購入して、自分が必要とするものには、ほど遠いことが分ったときです。電子設計自動化(EDA)ツールを決める前に、基板の設計に必要な高度な機能をサポートするか、確認する必要があります。また、自分特有のニーズに合うようカスタマイズできる統合環境で、これらの全ての要素が利用できることも重要です。 探すべき機能 私は、値段だけで車を選びました。もう一方の車と見た目は同じなのに、数千ドル安かったのです。結局、値段相応だと分りましたが、このことは、ECADソフトウェアにも当てはまります。たぶん、PCBの設計に、より安い、できれば無料のソフトウェアを使用したいと考えるでしょう。オプション機能の足りない点が、安い類似ブランドの問題点です。PCB設計が複雑になるにつれて、これらの「オプション機能」が必要になってくるのです。設計プログラムを選ぶ際に探すべきものをいくつか示します。 基板サイズ - これは当然ですが、挙げておきます。無料ツールの多くでは、基板スペースが厳しく制限されています。ソフトウェアが、回路に十分なスペースをサポートしているか確認してください。 高度なビア設計 - 高密度相互接続(HDI)基板や高速基板などを設計している場合、これは非常に重要です。 ブラインドビアやベリードビア 、 ビアインパッド(VIP) 、 マイクロビア 、 バックドリル加工 などの使用が必要になります。これらの機能のサポートは、低価格帯のソフトウェアには含まれない場合があります。必要であれば、利用できることを確認してください。 レイヤーの数 - 記事を読む
各種の高周波伝送ラインの長所と短所 各種の高周波伝送ラインの長所と短所 1 min Thought Leadership デートというのは面倒なものです。私は、相手かまわずデートしたり、とにかく早くデートしようとする試みに失敗した後で、オンラインのデートを試すことにしました。年齢の合う魅力的な女性を見つけ、デートの準備をしましたが、約束の場所に到着したとき、騙されていたことに気付きました。相手は写真とはまったく違う人だったのです。言うまでもなく、デートは失敗しました。それ以来、機会に飛びつく前に、デートとオンラインの出会い系サイトについてもう少し詳しく調査することにしました。オンラインのデートサイトとその所有者の複雑さついて詳しく調査したくなるかもしれませんが、その時間はほどほどにして、私たちにとって最も重要な相手であるPCBにも時間を振り分けるようにしましょう。近い将来において設計者に特に重要になると思われるのは、高周波伝送線路(TL)です。従来は、伝送線路の複雑な問題は、最新の回路を設計する人々に任せておけば十分でした。しかし現在では、ごく普通のエンジニアも、高周波アプリケーション用の基板を設計するようになっています。高周波アプリケーションは ますます一般的に なりつつあり、この傾向はますます強まるでしょう。私はデートについては詳しくありませんが、最も一般的な3つのTLである、マイクロストリップ、ストリップライン、共平面形線路(CPW)の基礎と応用について解説しましょう。 マイクロストリップ マイクロストリップ は最も基本的なTLで、言うなればありきたりの「夕暮れの浜辺を散歩しよう」というような提案です。この種のTLは一般に、基板の上に銅のストリップを1つ以上配置し、その下にGNDプレーンを設ける構造です。この方式は、オンラインデートのプロフィールのように非常に 製造が簡単 です。また、設計やモデルも簡単に行えます。デートの関係も、高周波電磁波伝送と同じくらい予測しやすければ問題はないのですが。 マイクロストリップの電磁(EM) 放射パターン から、電場のほとんどは基板に封じ込められることが分かります。同時に、わずかな部分がストリップの上へ放射されます。マイクロストリップのオープンな上部から放射される部分は、伝送における放射損失となります。 オンラインデートが一般的なのは、他の人たちと無線でつながることができるためです。マイクロストリップが一般的なのも同様の理由からで、このために パッチアンテナ に使用されます。比誘電率(Dk)が低く、比較的厚い基板と組み合わせると、優れたアンテナを実現できます。ただし、RF周波数帯からマイクロ波へ、さらにそれより短い波長へ移行すると、TLの有用性は減少します。マイクロストリップは、周波数が高くなるほど 基板のDk をエミュレートするようになり、損失が非常に大きくなります。 比較的低い周波数を使用し、面倒な問題なしに使用できる導体を希望する場合、マイクロストリップが理想的なTLです。 伝送線路といっても、このようなものは設計で使用できません。 ストリップライン 多くの出会い系サイトでは、過去に火事に遭ったので防護壁の影に隠れているような人々が見つかります。 記事を読む
高速PCB設計でシグナルインテグリティを維持するための差動ペア配線 高速PCB設計でシグナルインテグリティを維持するための差動ペア配線 1 min Thought Leadership 配線の状態が良好でない高速信号 私は過去に、お見合いをしたことがあります。ところが、見知らぬ相手の女性は遅刻の常習犯でした。時間通りにレストランに到着した私は20分ほど待った後に、約束をすっぽかされたのだと考えました。もう待つのはやめようと思ったとき、デートの相手が現れました。彼女の到着があと5分遅ければ、私たちが出会うことはなかったでしょう。高速PCBの設計でも、これと同じようなことが起こり得ます。それは、差動ペアが正しく配線されていない場合です。片方の信号が然るべき場所に到着しても、もう片方の信号が現れなければ万事休すです。デートをすっぽかされた信号の気持ちが傷つくことはないとはいえ、シグナルインテグリティーが低下したり、回路がまったく機能しなくなったりする問題が発生します。高速信号のための信頼できる橋渡し役として、双方が予定通り出会えるように配線を行う必要があります。 差動配線に関するヒントとテクニック その後も私たちはデートを重ねましたが、私は相手が時間を守れるようにするためにいくつかのトリックを使いました。相手を騙すことは道徳的に議論の余地があるでしょう。ただし、このトリックの対象が差動ペア信号であれば、時間厳守を徹底させることでシグナルインテグリティーを確保できます。下記のヒントを参考にして、タイミングを踏まえた差動ペア配線を行いましょう。 等長配線: 等長配線は差動ペア配線の最優先事項でしょう。片方の信号を放置したまま、もう片方だけで作業を進めるのは厳禁です。差動ペアの配線長が一致しないと、タイミング差によって相殺的干渉が発生し、シグナルインテグリティーが低下してしまいます。デートの相手の身長に対する好みが人によって違うのと同じように、配線長の不一致に対する耐性はそれぞれの回路によって異なります。設計を開始する前に、差動ペアを比較して、配線長の不一致に対するそれぞれの耐性を確認してください。 並行配線: 差動ペア配線では並行配線が最善策です。並行配線はEMIを解消するだけでなく、等長配線にも役立ちます。 電気的なクリアランスと沿面: 人間で言えば、今の恋人と昔の恋人に相当するように、それぞれ差動ペアはできるだけ近接させないことが肝心です。近接して配線した複数の差動ペアは、必ずマイナスの影響を及ぼし合います。十分な距離を保ことで、優勢度に関する衝突とEMIを最小限にすることができます。 差動ペアは、EMIの影響を受けやすいコンポーネントにも近接させてはなりません。この距離はクリアランスと沿面の両方で測定されるものです。回路の クリアランスと沿面の要件は、さまざまな方法を使って満たすことができます。 差動ペアをこのように配線しないこと 鋭角は厳禁: 差動ペアは方向を一切変えることなく、まっすぐに配線することが最善です。とはいえ、PCBのレイアウトがそれを許さないこともあるでしょう。女性のなかにはなめらかな体型の男性を好む人もいますが、差動ペアは「必ず」なめらかなカーブを好みます。カーブが鋭角になると、はるかに多くのEMIが発生するため、方向を変える場合は45度以内にすることが望ましいでしょう。EMIはカーブの内側と外側で発生し得るため、これを両方で考慮に入れることが重要です。 ビア: 一度に複数の恋人がいるのは、褒められたものではないでしょう。それと同じように、たくさんのビアを使うのも得策ではありません。ビアの配置は、シグナルインテグリティーの低下がわずかな場合にしか保証されません。ビアを使い過ぎるとシグナルインテグリティーが大幅に低下し、差動ペアで破壊的な反射が発生する恐れがあります。 PCBでビアを使わざるを得ない場合は、必ずスタブ長を短くするか、スタブのバックドリルを行ってください。ビアスタブは開口部のある伝送線路として機能するため、 信号反射が増加します。スタブ長によっては、信号が180度の角度で差動ペアに反射され、有効な反射が無効になることもあります。スタブのマイナスの影響を抑制するための一番の方法は、ブラインドビアまたはベリードビアを使用するか、ビアスタッズにバックドリルを行って、スタブ長を最小限にすることです。ただし、これらの方法はすべて製造コストを引き上げるため、予算が厳しい場合は距離を離した基板層でビアを接続するとよいでしょう。8層の基板では、1~7の接続に1~2の接続よりも短い未使用のスタブを使用します。 また、ビアが原因で発生する信号遅延量も一致させることが重要です。これについては、差動ペアの各伝送線路で同じ数のビアを使用するか、ビアが足りないほうの伝送線路に相応の蛇行配線を追加することで対処できます。誰もデートの邪魔者にはなりたくありません。すべてを均等に調和させるようにしてください。 記事を読む