SPICE: Certainty for All Decisions

Design, validate, and verify the most advanced schematics.

シグナルインテグリティ

Filter
0 Selected Content Type 0 Selected 全て Software 0 Selected 全て Clear ×
Clear
0 Selected Content Type
0 Selected Software
高速PCB設計においては、グラウンドプレーンのギャップを横切ってはいけません 高速PCB設計においては、グラウンドプレーンのギャップを横切ってはいけません 電子機器やPCBのフォーラムをよく閲覧していますが、同じ質問が何度も何度もされています。なぜグラウンドプレーンの割れ目を越えてトレースを引いてはいけないのか?この質問は、ハイスピードPCB設計にちょうど足を踏み入れたばかりのプロのデザイナーからメーカーまで、誰もが尋ねます。プロの信号完全性エンジニアにとって、答えは明らかでしょう。 長年のPCBレイアウトエンジニアであろうと、たまにデザインする人であろうと、この質問への答えを理解することは役立ちます。答えは常に絶対的な表現で枠付けられます。PCB設計の質問に絶対的な用語で答えることはあまり好きではありませんが、この場合は答えが明確です:グラウンドプレーンの隙間を越えて信号をルーティングしてはいけません。さらに詳しく掘り下げて、なぜグラウンドプレーンの隙間を越えてトレースを引いてはいけないのか理解しましょう。 グラウンドプレーンの隙間:低速および高速設計 この質問に答えるには、DC、低速、高速での信号の振る舞いを考慮する必要があります。これは、各タイプの信号がこの基準面で異なるリターンパスを誘導するためです。信号がたどるリターンパスは、基板内で生成されるEMIに及ぼす重要な影響、および特定の回路がEMIに対してどれほど感受性を持つかについて、いくつか重要な影響を及ぼします。PCB内でリターンパスがどのように形成されるかをよりよく理解するために、 この記事と、Francesco Podericoからの 役立つガイドをご覧ください。 PCB内でリターン電流がどのように形成されるかを理解すれば、それがEMIと信号の整合性にどのように影響するかを見るのは簡単です。ここで重要な理由です—そしてそれはグラウンドプレーンのギャップを越えるルーティングに関連しています。ボード内のリターン電流によって形成されるループは、2つの重要な振る舞いを決定します: EMIの感受性。回路内の供給電流とリターン電流によって作られるループは、ボードのEMIに対する感受性を決定します。大きな電流ループを持つ回路は、より大きな寄生インダクタンスを持ち、放射されるEMIに対してより感受性が高くなります。 スイッチング信号におけるリンギング。回路内の寄生インダクタンスは、信号がレベル間で切り替わる際の 過渡応答の減衰レベルを決定します。回路内の寄生キャパシタンスと併せて考えると、これら二つの量は過渡応答の自然周波数と減衰振動周波数を決定します。 DC、低速、高速信号を詳しく見てみましょう: DC電圧/電流 基板がDC電源で動作する場合、リターン電流は信号トレースの直下ではなく、供給リターンポイントに直線的に戻るため、リターンパスを実質的に制御することはできません。これは、大きな寄生インダクタンスのために基板がEMIに弱くなることを意味します。電源が切り替わらないため、過渡振動がないと思われがちですが、マイクロストリップトレースがグラウンドプレーンのギャップを越えてルーティングされている場合でも、EMIの感受性の問題は依然として存在します。DCループのインダクタンスをできるだけ低く保つべきであり、ループインダクタンスを減らすためには、グラウンドプレーンのギャップを越えるルーティングを避けるのが最善です。 低速信号 DC信号と同様に、リターンパスは回路のループインダクタンスを決定し、これが EMI感受性および過渡応答の減衰を決定します。ループインダクタンスが大きい場合、減衰率は低くなり、DC信号の場合と同様に、グラウンドプレーンのギャップを越えてルーティングするとループインダクタンスが増加し、信号の整合性、電力の整合性、およびEMIに影響を与えます。 残念ながら、低速信号はある種の遺物であり、TTL以上の速度のロジックを使用するすべてのボードは高速回路として振る舞います。低速信号(一般に数十nsの立ち上がり時間とそれより遅い)では、特定の回路のリンギング振幅は通常、低く抑えられていたため、気づかれないことが多かったです。したがって、信号がグラウンドプレーンのギャップを越えてルーティングされない限り、ループインダクタンスは通常、激しいリンギング、EMI感受性、および関連する電力整合性の問題を防ぐのに十分に低かったです(下記参照)。 高速信号 低速で動作するように設計された基板に高速信号を流すと、与えられた回路ループのインダクタンスに対して、リンギングの振幅が大きくなります。これは、基板内のループインダクタンスをできるだけ小さく保つ必要性を再び示しています。目標は、与えられた相互接続においてリンギングの振幅を減少させるために、できるだけ多くの減衰を提供することです。再び、グラウンドプレーンのギャップを越えてルーティングすることで、ループインダクタンスの増加を避けることができます。さらに、高速回路を運ぶ信号層の下にグラウンドプレーンを配置することで、相互接続全体を通じてループインダクタンスができるだけ低くなるようにする必要があります。
回路設計における過渡信号解析のためのツール Thought Leadership 回路設計における過渡信号解析のためのツール 適切なシミュレータを使用すれば、これらの回路で過渡信号解析を行うことができます。 私はまだ最初の微分方程式のクラスを覚えています。最初に議論されたトピックの一つが、多くの異なる物理システムで発生する減衰振動回路と過渡信号応答でした。PCB内のインターコネクトや電源レールでの過渡応答は、ビットエラー、タイミングジッター、および他の信号整合性の問題の原因となります。過渡信号解析を行うことで、完璧な回路を設計する道のりでどの設計ステップを踏むべきかを決定できます。 単純な回路での過渡信号解析は、手作業で調べて処理することができ、時間の関数として過渡応答をプロットすることができます。より複雑な回路は、手作業で分析するのが難しい場合があります。代わりに、シミュレータを使用して回路設計中に時間領域の過渡信号解析を行うことができます。適切な設計ソフトウェアを使用すれば、コーディングスキルも必要ありません。 回路設計における過渡現象の定義 正式には、過渡現象は、一連の結合された一次線形または非線形微分方程式(自律的であるか非自律的であるかにかかわらず)として記述できる回路で発生する可能性があります。過渡応答はいくつかの方法で決定できます。私の意見では、ポアンカレ・ベンディクソンの定理を使用して、任意の結合方程式セットに対して手作業で簡単に処理できるため、過渡応答のタイプと存在を簡単に判断できます。このような操作が得意でない場合でも心配はいりません。SPICEベースの回路シミュレーターを使用して、時間領域で過渡挙動を調べることができます。 フィードバックのない時間不変回路の過渡応答は、3つの領域のいずれかに分類されます: 過減衰:振動のない遅い減衰応答 臨界減衰:振動なしで可能な限り速い減衰応答 減衰振動:減衰し、振動する応答 これらの応答は、時間領域シミュレーションの出力で簡単に確認できます。SPICEシミュレーターを使用して、回路図から直接過渡信号分析を実行できます。 時間領域での過渡信号分析のためのツール 回路の挙動を調べ、過渡信号解析を探求する最も簡単な方法は、時間領域シミュレーションを使用することです。このタイプのシミュレーションは、ニュートン・ラフソン法または数値積分法を使用して、時間領域で回路のキルヒホッフの法則を解くことにより行われます。これは、シミュレートされる回路の形式に依存します。これらおよびその他の方法は、SPICEベースのシミュレータに統合されており、明示的に呼び出す必要はありません。過渡解析のもう一つの方法は、回路のラプラス変換を取り、回路の極と零点を特定することです。 回路シミュレーションの観点からは、回路図から直接過渡信号解析シミュレーションを実行できます。これには、回路の挙動の2つの側面を考慮する必要があります: 駆動信号。これは、過渡応答を引き起こす入力電圧/電流レベルの変化を定義します。これには、2つの信号レベル間の変化(例えば、スイッチングデジタル信号)、電流入力信号レベルのドロップまたはスパイク、または駆動信号の任意の変化が含まれる場合があります。正弦波信号や任意の周期波形で駆動することも考慮できます。また、信号が2つのレベル間で切り替わる際の 有限立ち上がり時間も考慮できます。 初期条件。これは、駆動信号が変動する瞬間または駆動波形がオンになった瞬間の回路の状態を定義します。これは、時刻 t = 0 で、回路が初めて定常状態(つまり、回路内に以前の過渡応答がなかった)にあったと仮定します。初期条件が指定されていない場合、t
マイクロ波およびミリ波周波数におけるRFアンプのインピーダンス整合 Thought Leadership マイクロ波およびミリ波周波数におけるRFパワーアンプのインピーダンス整合 MarketWatchによると、RFアンプの全体市場は2023年に270億ドルを超えると予想されています。では、これらのRFアンプはどこで使用されることが予想されているのでしょうか?5Gや一般的なセルラーネットワークの拡大により、予想される成長の大きな部分を占めることができます。PCBデザイナーにとって、特に高出力アンプの場合、RFアンプのインピーダンスマッチングは重要な設計ポイントになります。 大信号RFアンプのインピーダンスマッチング RF電力整合性に関わる人々は、特にパルスRFパワーアンプを扱う場合、アンプの出力を通じて過渡信号を抑制するためにモバイルデバイスに良好な電圧レギュレータが必要であることをよく知っているでしょう。RF設計に取り組み始めるかもしれない信号整合性に関わる人々は、RF回路を分析し、適切なインピーダンスマッチングを決定する際に、低信号レベルでSパラメータを使用することに慣れているかもしれません。Sパラメータの使用は、これらのアンプが非線形領域で動作しているため、Class ABおよびClass C RFアンプ設計には適していません。 低信号レベルでの電力伝送(つまり、線形領域において)に関しては、負荷インピーダンスが アンプの出力インピーダンスの複素共役に一致している場合に最大の電力伝送が保証されます。しかし、電力アンプ(通常、RF送信セクションに配置される)は、意図的なインピーダンスの不一致がある場合に、定格出力電力でより高い利得と効率を提供するかもしれません。 高出力で動作する場合、アンプの出力インピーダンス/負荷インピーダンスの一致/不一致が、負荷への最大電力伝送を生み出すものは、所望の周波数で最大効率を生み出す一致/不一致と一致しない場合があります(これは抵抗成分について確かに当てはまります)。では、最適な性能を確認するために、負荷における正しい一致したインピーダンスをどのように決定できるでしょうか?ソースによって見られるインピーダンスは、アンプの入力および出力電力レベルに依存するため、 アンプの出力によって見られる適切なインピーダンスを決定するためには、負荷プル分析を使用する必要があります。その後、この値に負荷のインピーダンスを一致させる必要があります。 シミュレータとスミスチャートを使用して、ロードプル解析を行う比較的簡単な方法があります。この方法は、特定の入力電力で、大量の負荷インピーダンス値(インピーダンスは抵抗とリアクタンスの合計であることを忘れないでください)を反復して通過させることです。次に、負荷抵抗とリアクタンスの各組み合わせに対して出力電流/電圧をプローブし、これによりゲインと効率も計算できます。その後、特定の入力電力での負荷インピーダンスの関数として出力電力の輪郭をプロットします。 これは以下のスミスチャートで示されています:各輪郭は、特定の出力電力(緑)と効率(青)を生成する抵抗とリアクタンスの値のセットを示しています。赤い輪郭は、これら2つの曲線のセットが重なる領域を示しています。輪郭が交差する特定の出力電力において、出力電力と効率の間のトレードオフを決定できます。異なる入力電力では、異なるセットの輪郭が生成されることに注意してください。 RFアンプのインピーダンスマッチングに関するロードプル解析の結果を示した例のスミスチャート [ ソース] 負荷プル結果から決定したリアクタンスと抵抗の組み合わせは、負荷インピーダンスを設定するためにどのマッチングネットワークを使用すべきかを教えてくれます。その後、テストクーポンを使用したベクトルネットワークアナライザーの測定でこれを確認できます。高周波でのマッチングネットワークの振る舞いに注意してください。自己共振に加えて(下記参照)、マッチングネットワークの帯域幅が FMCWチャープレーダーに対していくつかの問題を引き起こす可能性があります。77 GHzで、チャープ範囲が4 GHzに達することができるので、帯域幅は73から81 GHzまで比較的フラットであるべきです。
77 GHz レーダー用自動車用PCB:ルーティングと信号整合性 Thought Leadership 77 GHz レーダー用オートモーティブレーダーPCB:ルーティングとシグナルインテグリティ 最近の技術は急速に進化しており、自動車用レーダーは導入後間もなく、主に24 GHz近辺で動作していたものが、77 GHz波長へと移行しました。最近の規制変更により、77 GHzへの移行が可能となり、これには多くの利点があります。短い波長はより広い帯域幅を可能にし、より良い解像度、より小さいデバイスの形状、そしてより長い範囲を提供します。この帯域は偶然にも二原子酸素の2つの吸収帯の間に位置しており、24 GHz帯は水の吸収帯と重なっています。 高い周波数の使用は、77 GHz波長レーダーモジュールの設計、シミュレーション、およびテストに一連の課題を生み出します。レーダーモジュール自体の設計に加えて、デバイスレイアウト、より小さい形状への統合、および車両内のより大きなエコシステムへの統合は、完全自動運転車への長い道のりでの設計上の課題です。 長距離対短距離 77 GHz波長レーダー 前回の投稿で説明したように、チャープされたGHzパルスは、レーダーシステムの視野内の複数のターゲットを識別するために使用されます。チャープパルスの使用により、参照オシレータからの信号に対するドップラーシフトとビート周波数を測定することで、複数のターゲットの速度と距離の検出が可能になります。 位相配列アンテナ(3 Txおよび4 Rx SFPAs)の使用により、方向性の放射が可能となり、前述の2つの量とともに進入角を決定できます。 自動車用途の77 GHz波長レーダーで使用されるアンテナアレイのジオメトリ チャープ長(周波数範囲として測定)は、特定の自動車レーダーシステムの適用可能性の主要な決定要因です。長距離レーダー(LRR)は1 GHzの線形チャープパルス(76〜77 GHz)を使用し、高解像度短距離レーダー(SRR)は最大4
ダンピングと反射伝達における直列終端抵抗 ダンピングと反射の転送における直列終端抵抗 伝送線路を含む基板では、トレース、ソース、および負荷インピーダンスのマッチングが重要です。これらの条件を達成するために、単終端伝送線路に直列終端抵抗を使用する設計がいくつか見られるかもしれません。これを行う理由は、信号を遅らせるため、またはドライバーの出力インピーダンスを設定するためであり、誰に尋ねるかによって異なります。 驚くかもしれませんが、終端用の直列抵抗の配置は時々誤解されます。生じる疑問のいくつかは: 直列抵抗を手動で配置する必要があるのはいつですか? 目標インピーダンスに伝送線路を設計するだけでよい場合はいつですか? 短い伝送線路と長い伝送線路では何をすべきですか? 直列抵抗を使用した場合の信号整合性において、負荷容量とグラウンドバウンスはどのような役割を果たしますか? 単終端線路と差動線路の間に違いはありますか? シグナリング標準にインピーダンス要件がない場合(例:SPIやI2C)にはどうすればよいでしょうか この記事では、高速GPIOやシリアルバスの観点から、上記のいくつかの質問を見ていきます。私たちはしばしば SPIのような標準を見て、インピーダンス要件が指定されておらず、バスが遅く動作するため、終端が不要であると簡単に仮定します。しかし、これはすべての場合に当てはまるわけではなく、任意の終端抵抗の配置は、注入される信号の立ち上がり時間、トレースの入力インピーダンス、およびライン上のオーバーシュートの減少に影響を与えます。 単端線上のシリーズ終端抵抗の2つの機能 シリーズ終端を使用する典型的な理由は以下の通りです: バスにはインピーダンス仕様がありません 出力インピーダンスと信号レベルは、特殊ロジックの目標値に調整されています プッシュプルドライバーは非常に迅速に切り替わります(数ns以下であることもあります) 受信機で見られる信号の立ち上がり時間は、負荷容量に依存します ドライバーからの出力インピーダンスは通常低いです ライン上にリンギングがあります 最後の点は、長い伝送線上の反射、または短い線上での過渡応答の励起の2つの要因によって引き起こされる可能性があります。前者はインピーダンスの不一致に関連していますが、後者は代わりにグラウンドバウンスの原因となる同じ要因に関連しています。 長い線上の反射:ドライバーの出力インピーダンスは常に伝送線の単終端インピーダンスよりも小さいため、ソースでの直列終端が時々使用されます。理想的な場合、出力インピーダンスは0オームですが、一般的には小さな非ゼロ値になります。終端抵抗の値をサイズする最も簡単な方法は、伝送線インピーダンスから出力インピーダンスを引くことです:
PCB設計におけるシリコンフォトニクス統合の課題 PCB設計におけるシリコンフォトニクス統合の課題 シリコンフォトニクスは、シリコンICで使用されている製造プロセスをそのまま使用します 最近のIEEEカンファレンスでリチャード・ソレフと会い、電子・フォトニック統合回路(EPICs)の現状について話し合う機会を得ました。彼はしばしば「シリコンフォトニクスの父」と呼ばれており、その理由は明らかです。彼に優しく頼めば、シリコン上に直接フォトニック回路としての基本的な論理ゲートをどのように構築するかを教えてくれるでしょう。 今はシリコンフォトニクスにとって画期的な時期です。この技術は数十年前から存在していますが、現在、大量商業化の寸前にあり、大衆に提供されようとしています。標準的な電子部品で動作するシステムにシリコンフォトニクスを統合する前に、克服すべきいくつかのエンジニアリングの課題がまだあります。 ICおよびPCB設計における100 Gbps+の課題 ここまで読んでまだ混乱している人のために、いくつかの背景を説明します:フォトニック回路とは、光のみを使用して動作する回路要素です。これらの回路は、光学および電子工学のコミュニティで主要な話題です。12年前、設計者は銅を介して100 Gbpsでデータを転送できる単一リンクの作成について話していました。 銅は短距離で100 Gbpsのデータ転送を可能にすることがわかり、一方で光ファイバーは長距離で最適に機能します。遅い機器でも並列化を使用して、データレートを100 Gbpsや400 Gbpsに増加させることができます。100 Gbpsネットワークで動作するために必要な光学機器は、非常に特定の設計要件を持ち、すべての電子部品と普遍的に互換性があるわけではありません。 データレートが増加するにつれて、PCBやIC内の電気信号の整合性の問題がより顕著かつ目立つようになり、その結果、信号の立ち上がり時間が短くなります。ICレベルでは、データレートの増加に伴い、相互接続遅延時間、伝播遅延時間、およびクロストークの強度がすべて増加します。PCBレベルでは、クロストーク、 放射されたおよび伝導されたEMI、および熱管理が、高速設計の重要な考慮事項となります。光学部品は、電子部品で見られる同じ信号整合性の問題に悩まされない、より高帯域幅の解決策を提供します。電子IC設計におけるより大きな並列性は、光学部品によって提供されるより高帯域幅の解決策を必要とします。 フォトニック集積回路(PIC)と電子・フォトニック集積回路(EPIC)に注目してください。前者の回路は、多数のフォトニック要素を単一のパッケージに統合して、完全に光で動作するように設計されています。後者の回路は、光を使用して動作するように設計されていますが、これらの回路には電子要素が現れることがあります。したがって、これらの回路は、電子部品の帯域幅に応じて、標準的な電子部品ともインターフェースできます。 なぜフォトニクスで、なぜシリコン上なのか疑問に思うかもしれません。シリコン製造所とチップ製造能力の成熟度は、これらの伝統的な製造プロセスをフォトニック回路に即座に適応させることができることを意味します。もし私たちが近いうちにPICやEPICを見ることになるなら、それらは最も確実にシリコンフォトニクス技術に基づいて構築されるでしょう。 将来的には、これらのICをPICやEPICとインターフェースすることになるでしょう PCBでのシリコンフォトニクスの使用における課題 シリコンの素晴らしい点は、1550 nmの波長で透明であるため、1550
Altium Need Help?