PCB Design and Layout

Filter
Clear
高Dk PCB材料の利点 高Dk PCB材料の利点 「高速設計」と「低Dk PCBラミネート」の用語は、しばしば同じ記事で、そしてしばしば同じ文で使用されます。低Dk PCB材料は、高速および高周波PCBにおいてその場を持っていますが、高Dk PCB材料は電力の整合性を提供します。低Dk PCBは、一般に損失正接が低い傾向にあるため選ばれます。したがって、高Dk PCB材料は、高速および高周波PCBに対して見過ごされがちです。 高速/高周波ボードの電力の整合性を見るとき、単に信号損失を受け入れるか、高速ラミネートによって提供される値を受け入れるのではなく、安定した電力のための全体的な戦略の一部として誘電率定数を考慮すべきです。これには、PCBの電力の整合性に影響を与える誘電率定数の実部と虚部の両方が含まれます。これを念頭に置いて、電力の整合性を確保するために高Dk PCB材料が果たす役割を見てみましょう。 高Dk PCB材料とPCB電力の整合性 まず最初に、電力の整合性を見るとき、常にレギュレータ段階から出力される電圧が、PDN全体で電力が流れるにつれて一定であることを確保しようとしています。これには、PDN分析と電力の整合性の2つの側面が挙げられます: DC解析:ここでは、PDNを構成する 導体間のIR降下のみに関心があります。誘電率定数はDC解析では役割を果たしません。 AC解析:AC解析とは、電力平面上の任意の時間変動電流の振る舞いを意味します。これは、PDNのインピーダンスが重要となる場面であり、下流コンポーネントで見られる電圧変動は、 PDNインピーダンスと時間変動電圧(オームの法則)の積です。 電力面とグラウンド面の間の誘電体として使用される高Dk PCB材料は、重要な電力整合性の利点を提供します。特に、グラウンド面と電力面の間のPCB材料の高Dk値は、より大きな 面間キャパシタンスを提供し、これはあなたの平面がより大きなデカップリングキャパシタのように機能し、PDNインピーダンスが低くなることを意味します。グラウンド面と電力面を近づけることも面間キャパシタンスを増加させます。 2006年のIEEE論文からのいくつかの例示的なシミュレーション結果が以下に示されています。 誘電率定数のもう一つの重要な側面は、虚数部分またはDf値です。これは通常、損失正接を使用して要約されますが、これは高速/高周波ボードで特定の積層材の有用性を調べる際に使用する唯一の指標ではありません。