PCB Design and Layout

Create high-quality PCB designs with robust layout tools that ensure signal integrity, manufacturability, and compliance with industry standards.

Filter
見つかりました
Sort by
役割
ソフトウェア
コンテンツタイプ
適用
フィルターをクリア
PCB設計におけるシリコンフォトニクス統合の課題 PCB設計におけるシリコンフォトニクス統合の課題 1 min Blog シリコンフォトニクスは、シリコンICで使用されている製造プロセスをそのまま使用します 最近のIEEEカンファレンスでリチャード・ソレフと会い、電子・フォトニック統合回路(EPICs)の現状について話し合う機会を得ました。彼はしばしば「シリコンフォトニクスの父」と呼ばれており、その理由は明らかです。彼に優しく頼めば、シリコン上に直接フォトニック回路としての基本的な論理ゲートをどのように構築するかを教えてくれるでしょう。 今はシリコンフォトニクスにとって画期的な時期です。この技術は数十年前から存在していますが、現在、大量商業化の寸前にあり、大衆に提供されようとしています。標準的な電子部品で動作するシステムにシリコンフォトニクスを統合する前に、克服すべきいくつかのエンジニアリングの課題がまだあります。 ICおよびPCB設計における100 Gbps+の課題 ここまで読んでまだ混乱している人のために、いくつかの背景を説明します:フォトニック回路とは、光のみを使用して動作する回路要素です。これらの回路は、光学および電子工学のコミュニティで主要な話題です。12年前、設計者は銅を介して100 Gbpsでデータを転送できる単一リンクの作成について話していました。 銅は短距離で100 Gbpsのデータ転送を可能にすることがわかり、一方で光ファイバーは長距離で最適に機能します。遅い機器でも並列化を使用して、データレートを100 Gbpsや400 Gbpsに増加させることができます。100 Gbpsネットワークで動作するために必要な光学機器は、非常に特定の設計要件を持ち、すべての電子部品と普遍的に互換性があるわけではありません。 データレートが増加するにつれて、PCBやIC内の電気信号の整合性の問題がより顕著かつ目立つようになり、その結果、信号の立ち上がり時間が短くなります。ICレベルでは、データレートの増加に伴い、相互接続遅延時間、伝播遅延時間、およびクロストークの強度がすべて増加します。PCBレベルでは、クロストーク、 放射されたおよび伝導されたEMI、および熱管理が、高速設計の重要な考慮事項となります。光学部品は、電子部品で見られる同じ信号整合性の問題に悩まされない、より高帯域幅の解決策を提供します。電子IC設計におけるより大きな並列性は、光学部品によって提供されるより高帯域幅の解決策を必要とします。 フォトニック集積回路(PIC)と電子・フォトニック集積回路(EPIC)に注目してください。前者の回路は、多数のフォトニック要素を単一のパッケージに統合して、完全に光で動作するように設計されています。後者の回路は、光を使用して動作するように設計されていますが、これらの回路には電子要素が現れることがあります。したがって、これらの回路は、電子部品の帯域幅に応じて、標準的な電子部品ともインターフェースできます。 なぜフォトニクスで、なぜシリコン上なのか疑問に思うかもしれません。シリコン製造所とチップ製造能力の成熟度は、これらの伝統的な製造プロセスをフォトニック回路に即座に適応させることができることを意味します。もし私たちが近いうちにPICやEPICを見ることになるなら、それらは最も確実にシリコンフォトニクス技術に基づいて構築されるでしょう。 将来的には、これらのICをPICやEPICとインターフェースすることになるでしょう PCBでのシリコンフォトニクスの使用における課題 シリコンの素晴らしい点は、1550 nmの波長で透明であるため、1550 記事を読む
デジタルICにはどのサイズのデカップリングコンデンサを使用すべきですか? デカップリングコンデンサの計算:デジタルICにはどのサイズを使用すべきですか? 1 min Blog これらのデカップリングコンデンサは適切なサイズですか? PCB設計ガイドライン、特に高速デジタル設計の「専門家」が繰り返し指摘することの一つに、適切なデカップリングコンデンサのサイズを見つける必要性があります。これは、これらのコンデンサがPDNで何をすることが期待されているのか、また電源の整合性を保証する上での彼らの役割を完全に理解せずに対処されることがあります。また、デジタル集積回路の電源ピンとグラウンドピンをブリッジするために、3つのコンデンサ(通常は1 nF、10 nF、100 nFなど)を配置するという数十年前のガイドラインをデフォルトとするアプリケーションノートも多く見かけます。過去には、これで十分だったかもしれません。高速デジタルコンポーネントで生じる電源の整合性の問題は、コア電圧に干渉するほど悪くなかったので、3つのコンデンサが行う仕事は十分でした。 今日の高速集積回路は、複数の出力を持ち、コア電圧が低い(1.0Vまで低い)ため、昔の遅いコンポーネントよりもはるかに厳しいノイズ制約を持っています。厳しいノイズ制約とは、より正確なデカップリングが必要であることを意味します。このため、今日の比較的強力なMCUやその他多くのデジタルコンポーネントを扱う設計者は、デカップリングキャップを適切にサイズする方法を知っておく必要があります。では、最良の方法は何でしょうか?一般的に、これを行う方法は2つあります。それぞれを見て、デカップリングキャパシタの値を計算する方法と、なぜ古い「3つのデカップリングキャパシタの神話」が現代の高速デジタル設計では関係ないのかを見てみましょう。 等価キャパシタモデルの理解 デジタル設計に必要なデカップリングキャパシタのサイズを決定する前に、キャパシタの基本的な回路モデルを理解する必要があります。キャパシタが理論通りに振る舞うと思いたいところですが、実際にはそうではありません。すべてのキャパシタには、そのインピーダンススペクトルを定義するリード上にある程度のインダクタンスがあり、これは実験的に直列RLCネットワークとしてモデル化されます: キャパシタをモデル化するための等価RLC回路 このモデルでは、ESRとESLはそれぞれ等価直列抵抗と等価直列インダクタンスです。Cの値は、コンポーネントのデータシートに記載されているキャパシタンスとして取ることができます。最後に、Rの値はキャパシタを形成する誘電体の導電率を考慮しています。これは、キャパシタが充電されて回路から取り外された後に発生する一時的な漏れ電流を考慮しています。この値は通常、無視できるほど大きいです。 このモデルでRを無視すると、値(ESR/(2*ESL))は、回路の端に接続された負荷が0オームであると仮定した場合の等価回路の減衰定数です。これは、回路がフル充電/放電下で入力電圧の変化に対応するために必要な最小時間です。キャパシタのデータシートには減衰定数は記載されていませんが、代わりに下記のようなインピーダンススペクトルグラフを示しています。必要であれば、データシートのESLとESRの値を使用して減衰定数を計算することができます。 最後に、 すべての実際のキャパシタには自己共振周波数があり、任意の直列RLC回路の値と等しく、この場合は次のとおりです: 自己共振周波数は、インピーダンススペクトルグラフで確認できます。以下に、実際のAVXキャパシタの例を示します。 デカップリングキャパシタは実際に何をするのか? これは、デジタル集積回路の電力整合性を保証するためにデカップリングキャパシタが必要な理由を理解するのに非常に役立つ素晴らしい質問です。全てのキャパシタは、直流電源に接続されたときに平衡状態で電荷を蓄えます。キャパシタ内の板は充電され、総電荷量はQ = CVに等しくなります。もしVが変動したり少し落ちたりすると、その電荷Qの一部が放出され、小さな電池のように負荷に供給されます。 デジタル回路に接続された実際のコンデンサーで生じる問題は、電圧降下が単一の周波数で発生しないことです。ソース電圧の時間依存の変動や回路への突然の電流バーストは、オシロスコープ上で鋭いエッジレートを持つスパイクのように見えることがよくあります。これは、その信号に関連するパワースペクトラムが一連の周波数にわたって広がり、自己共振と重なることを意味します。結果として、コンデンサーは応答して放電し、 電源バス上に一過性の振動を引き起こします。この電力が電源バス上のデジタルコンデンサICによってPDNに引き込まれる場合、電源バス上の一過性は電源ピンでのリンギングとして現れます。しかし、適切なデカップリングコンデンサのサイズと数が選択されれば、この変動は最小限に抑えることができます。これが、3つのコンデンサの持続的なガイドラインがある理由です。それは、安定した電力を確保しようとする際に、最も悪くない配置とサイズ付けです。 記事を読む
対称ストリップラインインピーダンス計算機と公式 対称ストリップラインのインダクタンスまたはインピーダンス計算機と公式 1 min Blog 以前の記事 では、表面および埋め込みマイクロストリップトレースの インピーダンスを計算する際に、異なる計算機を使用すると生じる不整合について見てきました。前の記事で述べた多くの問題は、ストリップラインインピーダンス計算機にも当てはまります。対称ストリップラインは、非対称ストリップラインよりも、数値的にも解析的にも対処しやすいです。ここでは、対称ストリップラインのさまざまなインピーダンス公式と計算機の短い比較を行います。 IPC公式とワデルの方法 マイクロストリップインピーダンス計算機の場合と同様に、ストリップラインインピーダンス計算機は、IPC-2141公式またはワデルの方程式に依存する傾向があります。計算機がこれらの方程式を適切な近似の下で実装しているかどうかは常に慎重に確認するべきです。始めるために、この記事の方程式で使用される記号は、以下に示される幾何学に対応しています: 対称ストリップラインの幾何学 多くの計算機は、上記の図の幾何学的パラメータに対するさまざまな限界について、方程式を一連の近似に分割します。これらの方程式は、ワデルの方法を使用して見つけることができます。特定の(相互に排他的ではない)近似の下で、以下の方程式はストリップラインのインピーダンスを定義します: 狭いストリップのためのストリップラインインピーダンス方程式 広いストリップラインの場合、上記の方程式はフリンジ容量係数の観点から次の方程式に簡略化されます: 広いストリップのストリップラインインピーダンス方程式 上記の解は、IPC-2141規格で明確に定義されています。一般に、これらの方程式は実験結果と比較して約1%の誤差を生じますが、これはマイクロストリップ伝送線のIPC標準方程式よりもはるかに高い精度です。IPC-2141標準が正しい定義を使用している一例です。 良い計算機は、関連する限界を自動的に区別し、ユーザーの入力に基づいて正しい方程式を適用します。他の計算機は、ユーザーが狭いストリップラインまたは広いストリップラインを指していると仮定しますが、計算機の適用可能性を明示的には述べません。ストリップラインのインピーダンスを計算する際に、計算機が上記の二つの限界のいずれかを定義しているかどうかを必ず確認してください。 一部の計算機は直接互いを模倣しているため、同じタイプの誤りを含むことがあります。特定の近似の下でのみ有効なストリップラインインピーダンス計算機のために定義された他の方程式もあり、それらは実際には上記の方程式の簡略化です。著者の意見としては、これらの他の方程式は避けるべきだと考えられます。 限界 T = 0 での代替解は、第一種楕円積分の形で書くことができます。自分のストリップライン計算機を作成することに興味がある開発者は、この積分を評価するための標準的な数値アルゴリズムを簡単に実装できます。興味のある読者は、この方程式についての コーンのオリジナル論文を参照してください。 伝送線との関係 記事を読む
PCB設計におけるEMI/EMC基準の達成 PCB EMI/EMC ガイドライン:あなたの設計でEMI/EMC基準を満たす 1 min Blog もし、携帯電話を2台並べたら、突然どちらも正常に動かなくなったらどうでしょう?幸いにも、このようなことは起こりません。なぜなら、設計者や製造業者が、これらのデバイスが導電性および放射性の電磁干渉(EMI)に関するEMC基準に準拠するように、真剣な努力をしているからです。どのデバイスも、市場に出る前にEMC基準を満たしている必要があります。 これは複雑に聞こえるかもしれませんが、次のデバイスがEMCテストに合格するのを助けるための、いくつかのシンプルな設計戦略があります。さまざまなEMC基準団体とその仕様を知ることから始めるのが良いでしょう。 PCB設計のためのEMC/EMI基準 EMC基準は、規制基準と業界基準の2つの広いカテゴリーに分かれます。あなたの設計のための規制基準は、製品を市場に出して販売したい場所(必ずしもそれが設計されたり製造されたりする場所ではない)に依存します。最初のEMC基準のいくつかは、1979年にアメリカ合衆国連邦通信委員会によって確立されました。その後、ヨーロッパ共同体が独自のEMC基準を定義し、これが将来の欧州連合基準の基礎となり、現在はEMC指令として知られています - 正式には欧州議会の電磁両立性(EMC)指令2014/30/EUと命名されています( こちらからヨーロッパの基準を見ることができます)。 業界標準への適合は、法的な問題だけでなく、特定の環境やアプリケーション領域で展開される電子機器の一貫性と相互運用性を保証するための業界固有の問題でもあります。効果的に、業界のEMC標準は、製造、組立、性能などの他の業界標準と同じ役割を果たします。EMC要件を定義する主要な業界標準機関および規制機関には、 米国連邦通信委員会(FCC) 米国連邦航空局(FAA) アンダーライター・ラボラトリーズ(UL) アメリカ無線技術委員会(RTCA) 国際電気標準会議(IEC)、通じて国際特別無線障害委員会(CISPR) 国際標準化機構(ISO) 自動車技術者協会(SAE) 電気電子技術者協会(IEEE) 米国軍を通じてのMIL-STD標準セット IECおよびCISPRの標準はヨーロッパでより人気がありますが、IEEEの標準は米国でより人気があります。特に、IEEEの標準はアンテナ校正試験の基礎を形成します。MIL-STDのEMC要件は、世界で最も厳格な標準の中の一つであり、電子機器の商業セクターに適応される最初の標準のいくつかでした。 EMC標準に準拠するための広範な要件 企業が非準拠のデバイスや製品をリリースした場合、警告を受けるか、 記事を読む
トレースインピーダンス計算機と公式の解説 トレースインピーダンス計算機と公式の解明 1 min Blog 一見すると明らかではないかもしれませんが、PCB設計の基礎となる数学がほぼ確定していると考える人にとっても、トレースインピーダンスを計算する正しい式については多くの意見の相違があります。この意見の相違は、オンラインのトレースインピーダンス計算機にも及んでおり、設計者はこれらのツールの限界を認識しておくべきです。 トレースインピーダンス計算機の問題点 お気に入りの検索エンジンを使用してトレース インピーダンス計算機を探すと、いくつか見つかります。これらのオンライン計算機の中には、異なる会社からのフリーウェアプログラムがある一方で、出典を示さずに式だけをリストしているものもあります。これらの計算機の中には、特定の前提条件をリストせず、関連する近似を詳細に説明せずに結果を出力するものもあります。 これらの点は、例えば、印刷トレースアンテナのためのインピーダンスマッチングネットワークを設計する際に非常に重要です。一部の計算機では、ブロードサイド結合、埋め込みマイクロストリップ、対称または非対称ストリップライン、または通常のマイクロストリップなど、さまざまなジオメトリでトレースインピーダンスを計算することができます。他の計算機はブラックボックスのようなもので、どの式を使用しているのか、これらの計算の正確性を他の多くの計算機と比較することなしに確認する方法がありません。 TRANSLATE: ダグラス・ブルックスが 2011年10月の記事で述べたように、「多くの設計者の意見として、現在十分と考えられるインピーダンスの公式は存在しない。」トレースインピーダンスの公式の数学を細かく分析し、トレースインピーダンスの完全な解決策を提供することは、この記事の範囲を超えています。代わりに、IPCがよく指定する経験的トレースインピーダンスの公式と、 Transmission Line Design Handbookのブライアン・ワデルによって提供されたより正確な方程式を見てみましょう。これらは ウィーラーの方法論に基づいています。 IPC-2141対ウィーラーの方程式(マイクロストリップ用) IPC-2141規格は、 マイクロストリップとストリップラインのインピーダンスに関する経験的方程式の一つの情報源に過ぎません。しかし、IPC-2141のマイクロストリップトレースの公式は、ウィーラーによって提示された方程式よりも正確さに欠けます。 Polar Instrumentsは、このトピックの簡単な概要を提供しており、この記事ではIPC-2141の方程式とウィーラーの方程式がリストされています。 特性トレースインピーダンスのためのIPC-2141方程式 これらの方程式の精度は、異なるインピーダンスを持つマイクロストリップトレースについても、Polar 記事を読む
高速PCB設計 PCBシグナル:高速PCB設計の重要要素 2 min Blog 課題の理解 どれくらいが長すぎるのか? インピーダンスのマッチング リターンエネルギーはどこで流れるのか? 差動ペア ビアについては? クロストーク 時間に合わせて踊る 基板 材料 レイヤー 可能なレイヤースタックアップ 課題の理解 この記事の目的は、高速設計の主要な要素を紹介し、それぞれの要素がAltium Designerでどのように取り組まれているかを議論することです。この記事は高速設計の完全な議論を提供しようとするものではありません。そのため、高度に経験豊富で学識深い設計者やエンジニアが、この主題に関して優れた参考文献や書籍を多数執筆しています。この記事の研究中に使用された著者や論文へのリンクについては、 参考文献 セクションを参照してください。 PCB設計が高速設計であるとは具体적にはどういうことでしょうか?確かにそれは物事が迅速に行われることに関係していますが、ボード上で使用されるクロックレートだけの話ではありません。デバイスが高速でエッジを切り替えるとき、つまり、信号がルートを伝わってターゲットピンに到達する前に遷移が完了するほど迅速に状態が切り替わるデバイスが含まれている場合、その設計は高速設計とされます。この状況では、信号がソースピンに反射され、元の信号データが劣化または破壊される可能性があります。高速エッジを持つ信号は、ルートから放射して隣接するルートにカップリングすることも、さらに放射して電磁干渉(EMI)となり、製品が強制的な放射基準を満たさなくなることもあります。 信号に高速のエッジがある場合、エネルギーがルーティングを通じて移動する方法が変わります。エッジレートがゆっくりと変化する回路では、エネルギーがパイプを通って水が流れるように、ルーティングを通じてエネルギーが流れると考えることができます。はい、水がパイプを押し通される際に摩擦によっていくらかのエネルギーが失われますが、基本的にはそのほとんどが他端に到達します。DCまたは低切替え周波数の回路では、ルートの抵抗を計算し、途中で失われるエネルギーの量が回路の性能に影響を与えないようにすることができます。 高速設計ではそれほど単純ではありません。なぜなら、配線された銅を通じて電子として流れるエネルギーだけでなく、高速で切り替わる信号では、そのエネルギーの一部が配線された銅の周りを電磁エネルギーとして移動するからです。これで、あなたはもはや電子のための銅の経路を設計しているのではなく、プリント基板に埋め込まれた一連の伝送路を設計しているのです。 記事を読む