PCB Design and Layout

Create high-quality PCB designs with robust layout tools that ensure signal integrity, manufacturability, and compliance with industry standards.

Filter
見つかりました
Sort by
役割
ソフトウェア
コンテンツタイプ
適用
フィルターをクリア
PCBデータ管理とは PCBデータ管理とは? 1 min Blog どんなPCBでも、優れた設計と製造にはデータ管理がつきものです。各PCBプロジェクトには、コンポーネントやフロントエンド回路図、物理レイアウト、製造ファイルに関する大量のデータが含まれています。お使いのPCB設計ソフトウェアには含まれていない他のドキュメントが必要となるかもしれません。不完全なデータや古いデータを使うと想定通りの設計ができなくなるため、設計者はこれらのデータをすべて追跡、管理する必要があります。 PCBデータ管理では、複数の領域にまたがる要件と設計情報を扱います。まず、最終製品がどのように動作するか、またその仕様と許容差、動作環境についての機能要件があります。さまざまな形式(データシートや、設計ツールライブラリにデジタル保存されたものなど)で各コンポーネントに関連付けられたデータもあります。さらに、PCB自体、その材料特性、物理的レイアウト、生産要件に関するデータもあります。設計は必ずしもゼロから始まるとは限りません。以前成功した設計の一部を再利用しなければならない場合もあります。 設計者は、以下の重要事項を考慮しなくてはなりません。 必要なデータはすべて揃っているか 設計データは正確で最新のものか 自分の知らないところで、誰かが変更を加えたか この記事では、こうした事項を確認するために役立つ情報と、最新のツールがプロの設計会社やOEMのデータ管理プロセスをどのように変えているかについてご紹介します。 PCBデータ管理とは? PCBデータ管理は、プリント回路基板の設計、製造、実装に使われるデータの取得、保存、検証、使用法、分配、維持など、幅広い範囲にわたる作業を指します。PCB設計プロジェクトにおいてデータが作成、取得されるのは、以下のような場合です。 SOWやプロジェクト要件、デバイス要件を作成するとき フロントエンドエンジニアリングにおいて、予備設計が作成され、コンポーネントデータが収集されるとき 機械設計および電気設計をCADソフトウェアで作成する、物理設計の作業中 設計が製造に転送され、最終的な設計データが製造用に準備されるとき 設計プロセスの一部における、設計に関する決定は、筐体の形の変更などといったその他の要素にも影響を及ぼします。それによって、 PCBコンポーネントが中に収まらなくなることもあります。操作環境を変更すると、異なる周囲温度やより高い振動レベルに対応できるような設計を行う必要が出てきます。論理回路セクションの設計は、異なる許容差を持つ電力供給に適したものでなければならなくなるかもしれません。想定される変更点は莫大な量となります。いかなる変更も突き止めるられるデータ管理プロセスは必須です。 これらの問題は、PCBレベルであろうと機械設計であろうと、新製品に関する共同作業を行う場合に拡大します。たとえば、仕様が変更されたことや、物理的または電気的特性が異なる別のコンポーネントが設計に入れ込まれたことなどを、設計チームの全員がプロセス内で確実に把握する必要があります。すべてのデータで、変更や新しい情報が追跡され、それが設計チームの全員が見られる共有システムにコンパイルされると、すべてのプロジェクト関係者が表示およびアクセスできるようになります。 この概念についてもう少し詳しくご説明します。データ自体の管理について取り上げる前に、どんな情報を取得すべきか、またこの情報をどこでどのように取得するのかについて見ていきたいと思います。 PCB業界にしばらくいた方なら、PCB設計の一般的なプロセスについてはほとんどご存じでしょう。ほとんどのPCB設計では始めに同じか非常によく似た情報を使い、ソースは多くの場合同じものです。栄養豊かな地面に植えられたどんぐりが大きな木に成長するようなものです。また、最初の情報こそプロジェクト全体の成功に大きくかかわってきます。PCB設計の最初に使う情報が正確でなければ、その設計も正確なものにならない可能性が高くなります。この段階で注力すべきは、情報の量よりも質であるということをしっかりと覚えておきましょう。 データの作成と取得 データは、PCB設計チーム、製品メーカー、外部請負業者、最終顧客を含むすべてのプロジェクト関係者によって作成、編集されます。このようなデータには以下が含まれますが、必ずしもこれだけに限定されるわけではありません。 記事を読む
直列終端抵抗の計算 直列終端抵抗の計算 1 min Blog 伝送線路に関しては、簡単に思えることがあまりありません。終端技術の決定や終端ネットワーク内のコンポーネントの値を決めることは難しい作業であるべきではありません。ほとんどのPCB設計プログラムでは、計算機をオンラインで探すか、手計算をしなければなりません。代わりに、設計ソフトウェアは終端ネットワーク内のコンポーネント値の範囲を簡単にテストできるようにするべきです。 一部のコンポーネント、トレース、差動ペア、およびビアを介してルーティングされる相互接続は、高速または高周波回路で伝送線路効果が生じるのを防ぐためにインピーダンスマッチングされるべきです。小さなインピーダンスの不一致は許容できるかもしれませんが、いくつかの信号ドライバーは、信号トレースで一般的に使用される標準の50オーム値と一致しないインピーダンスを持つことがあります。ルーティングおよびコンピュータアーキテクチャの標準(例えば、 PCIe Gen 2およびGen 3)も差動ペアインピーダンスに異なる値を使用していることに注意すべきです。 トレースが伝送線路効果を示し始めると判断した場合、この記事では、Altium Designer®の信号整合性ツールを使用してシリーズ抵抗の正しい値を決定する方法を示します。 どの終端ネットワークを使用すべきか? この質問にはいくつかの答えがあります。なぜなら、 いくつかの可能なネットワークや終端装置が存在するからです。デジタル信号については、抵抗器が広帯域コンポーネントであるため、抵抗終端を好みます。ICのドライバーピンに直接配置された場合、非常に高い帯域幅までのドライバーを終端するために使用できます。対照的に、RF出力やアンテナは、抵抗性の電力損失を避けたいため、LCネットワークを好むでしょう。そして、インダクタとキャパシタ(直列またはシャント要素として)の正確な配置は、インピーダンスをシフトして共振周波数に合わせる必要がある方法に依存します。 抵抗終端に関しては、一般的に使用される2つの方法があります。シリーズ終端(ドライバーピンに配置)と並列終端(受信機からGNDに配置)。 シリーズ終端の効果について覚えておくべき重要なことが2つあります: シリーズ終端は、ドライバーの電圧レベルが受信機の電圧レベルと一致する必要がある場合に自体で使用されます。この場合、並列終端を使用しないでください。また、シリーズ抵抗をソースインピーダンスと伝送線インピーダンスと完全に一致させる必要があります。 シリーズ終端は並列終端と共に使用することができますが、それらは一般的ではない特殊なケースでより多く使用されます。 終端は、それが必要であることを確認し、使用しているインターフェースに目標とするインピーダンスの仕様がない場合にのみ適用すべきです。 ドライバーに直列終端抵抗を使用する理由には以下のようなものがあります: 終端されていない負荷からの反射が予想されるほど線が長い場合、終端されていないドライバーとトレースの間には必要です。そして、信号ドライバーのインピーダンスがトレースのインピーダンスよりも小さい場合 出力で見られる減衰を増やして、グラウンドバウンスを抑制するのに役立ちます。 次に、SSN、または 記事を読む
標準的なPCBの厚さとレイヤースタック 標準的なPCBの厚さとレイヤースタック 1 min Blog 1990年代のシットコムが大好きだと白状します。もしジェリー・サインフェルドがPCBデザイナーだったら、「1.57 mmの基板厚さって何のこと?」と聞くかもしれませんね。実に妥当な質問ですし、PCB設計やその他のエンジニアリングの分野でなぜ特定の標準値(例えば、 RFシステムの50オームのインピーダンスなど)が使われるのか不思議に思うこともあります。 これらやその他の設計値がPCB設計で標準化された良い理由がありますが、それらが業界標準で明確に定義されているわけではありません。PCBの厚さに関しては、その理由は主に歴史的なものですが、すぐに見ていきます。しかし、標準の基板厚さ1.57 mmだけがアクセスできる厚さではありませんが、ほとんどのメーカーはこの値を収容するように製造能力を中心にしています。もし 1.57 mm基板厚さの歴史 Lee Ritcheyは、事実上の標準である1.57 mm基板厚さの歴史を うまくまとめています。Leeが回路基板の厚さの値について述べているすべてを繰り返すことなく、この数字が業界内で事実上の標準になった理由を簡単に要約します。 電子デバイスがトランジスタや集積回路へと移行していた時代、基板は合板の作業台でブレッドボーディングによって組み立てられていました。その際、合板の表層をバケライトと呼ばれる材料に置き換えていました。合板に詳しい方なら、合板の一枚の厚みが1/16インチ、つまり1.57mmであることをご存じでしょう。この厚みは、基板間の接続が必要になった際に何らかの標準となり、新しい材料に適応されていきました。初期の基板間接続には、エッジコネクタを使用したラックユニットが用いられ、これらのエッジコネクタはこの標準厚みに合わせる必要がありました。現在では、バケライトの代わりにエッチングやめっきが可能な材料や、 FR4エポキシ積層板を使用しています。 代替のPCB厚み値 今日、一部の製品(例えば、PCIeアドインカード、Mini-PCIeカード、またはSODIMMスティック)やアプリケーションノートの配線ガイドラインでは、1.57 mm(またはあまり一般的ではない値の1.0 mm)が指定されることがあります。しかし、よく考えてみると、製造可能性や、高い 層数や高い銅の重さを収容するため以外に、このPCBの厚さが他のボード厚さの値よりも好ましい理由はないことに気づくでしょう。多くのメーカーは、低層数のこの回路基板の厚さを選択しています。それは、常にそうであり、ほとんどの顧客から一般的に期待されているからです。 1.57 mmの値は、事実上の標準となっているため、任意のメーカーにとって必要な能力の一つですが、多くのメーカーはこの厚さのさまざまな倍数のボードを製造できるように能力を適応させています。一部のメーカーから見つかるかもしれない他のPCBの厚さの値には、2.36 記事を読む
PCB設計に必要な基本ツール PCB設計に必要な基本ツール 1 min Blog 家を建てるのもPCBを作るのも、道具箱に適切な道具が必要です。すべての設計者は、コンポーネントの配置にCADツールを持っている必要がありますが、コマンドラインベースのCADソフトウェアでも正確なコンポーネント配置が可能です。現代の電子デバイスがあらゆるレベルで複雑になるにつれて、設計者は重要な設計作業を迅速に進めるのに役立つツールが必要です。 適切なPCB設計ツールのセットを選択するには、いくつかの可能性のあるオプションを比較検討する必要があります。市場にはさまざまな機能を持つソフトウェアパッケージが多数あり、誰もがすべてのソフトウェアパッケージの無料トライアルを試す時間はありません。これらの設計プラットフォームの中には、20年前と同じ時代遅れのワークフローを使用しているものもあります。これを踏まえて、設計者がPCB設計ソフトウェアに必要とするいくつかの重要なツールを見てみましょう。 回路図設計とキャプチャ 電子回路図は、家の基礎のようなものです。ボード上に配置するすべてのものは、この基礎文書に基づいています。この重要な文書は、ボードに必要なコンポーネント、それらがどのように接続されているか、電源とグラウンドの接続位置を示しています。適切な回路図エディターを使用すれば、レイアウトを簡単に計画し、ボードに注釈を付けることができます。 スキーマティックエディタを使用すると、ボードを整理できますが、設計が複雑になり始めると、単一のスキーマティックで作業するのが扱いにくくなります。ボードに複数の機能を含め始めると、階層的なスキーマティックで作業することで、物事を整理できます。これにより、コンポーネントを機能ブロックにどのように適合するかに基づいて異なるスキーマティックに分けることができ、スキーマティック間の親子関係を定義できます。 マルチチャネルPCB設計ツールを使用することは、整理された状態を維持するだけでなく、階層的なスキーマティック内のコンポーネントのグループを簡単に複製することを可能にします。初期レイアウトとして スキーマティックをキャプチャすると、これらの複製されたコンポーネントのグループは新しいボードに転送されます。その後、コンポーネント間でトレースのルーティングを開始し、電源およびグラウンド接続を配置できます。 階層的なスキーマティックは、PCB内の異なるブロック間の関係を定義するのに役立ちます ルーティング機能 回路図が初期レイアウトとして取り込まれると、CADツールがコンポーネントの配置やトレースのルーティングを支援する準備が整います。ルーティングは、ボード上のコンポーネント間の物理的な接続を定義する重要な作業です。シンプルな設計では、各接続を手作業でルーティングし、レイアウトを設計ルールと照らし合わせてチェックするのは簡単なことです。しかし、ボードが複雑になり、必要な相互接続の数が増えるにつれて、ルーティングプロセスを自動化できるツールは膨大な時間を節約してくれます。 オートルーターとインタラクティブルーターの利点に関する議論は永遠のようです。差動ペアを含まず、多数の信号ネットや相互接続上のビアの数に制約がないシンプルなボードでは、オートルーターでもまともなレイアウトを生成できます。これらの場合、適切なルーティング戦略を定義できれば、オートルーターがより良いレイアウトを生成することに注意してください。 ここで、オートインタラクティブルーティングが重要なPCB設計ツールとなります。 オートインタラクティブルーターは、オートルーターとインタラクティブルーターの最良の側面を組み合わせます。特定の信号ネットの相互接続に沿って手動でウェイポイントを定義でき、ツールは自動的にソースコンポーネント、これらのウェイポイント、および負荷コンポーネント間のネット内のトレースをルーティングします。 このタイプのレイアウトを作成することは、自動対話型ルーターを使用するとはるかに簡単です。 信号完全性と電力供給分析 信号完全性に関して言えば、現代のデジタルICは非常に高速で切り替わるため、ほぼすべての設計者にとって信号がクリーンな状態を保つことが重要な考慮事項となります。信号完全性を確保するには、特定のアプリケーションに適した 適切なレイヤースタック、トレースの形状、およびグラウンドプレーンを設計することが本当に必要です。これらはすべて、CAD、ルーティング、およびボード設計ツールのタスクです。 適切な信号完全性パッケージを使用すると、異なるネットでの反射とクロストークの波形を調べることができます。これにより、終端が必要なタイミングと、異なるトレースで使用すべきマッチングネットワークを決定するのに役立ちます。 電力供給と熱管理に関しては、電力供給ネットワークアナライザー(PDNA)を使用することで、トレース、電力およびグラウンドプレーン、ビア全体のIR損失を特定できます。PDNAは、直感的な出力形式を使用して電圧および電流密度の結果を生成する必要があります。最高のツールは、対話型のカラーマップを表示し、潜在的な電力熱問題や過度のIRドロップについてボードを視覚的に検査できるようにします。 PCB全体の電力供給を示すカラーマップ 記事を読む
ワークフローを平滑化する:「フラット」スタイルのプロジェクト管理ガイド ワークフローを平滑化する:「フラット」スタイルのプロジェクト管理ガイド 1 min Blog フラットな組織が人気を博すにつれて、それに伴う方法やプロセスも同様に普及しています。このブログでは、フラットな組織構造自体ではなく、プロジェクト管理の領域内でフラットな組織がどのように機能するかについて議論します。フラットな組織から学んだプロジェクト管理の原則は、最もフラットな会社から最も階層的な構造を持つ組織まで採用することができます。 「フラット」であることは流行っていますが、なぜそれを行うべきなのでしょうか? 「なぜフラットなプロジェクト管理に興味を持つべきか?」という質問をしているかもしれません。プロジェクトマネージャーにとって、答えはシンプルです:委任の必要が少なく、状況の確認を求めることが少なく、監視も少なくなります。これは、あなたが好きなことにもっと時間を割くことができるということを意味します... それが仕事の管理を楽しんでいる場合は(その場合はここで読むのをやめるべきです)。管理される側にとっても、明らかです:なぜ常に状況を追及され、仕事の正しいやり方を「助言」される必要があるのでしょうか?再び、それが好きなら、これはあなたにとって正しいスタイルではないかもしれません。ここでの考え方は、マネージャーが少ない管理を必要とし、他のすべての人が自分の仕事を望むように自由に、そして自律的に行うことができるということです。 前提条件 プロセス自体を始める前に、これを実際に機能させるための3つの主要な前提条件があります:信頼、透明性、そしてコミュニケーション。 ここ 図1. 信頼、透明性、コミュニケーション 信頼:お互いを信頼することは、フラットなプロジェクト構造を成功させるための鍵です 透明性:全員が自分が何をしているのかを完全にオープンにする必要があります。これは、以下のようないくつかの媒体を通じて彼らの仕事を伝えることで行うことができます: コードのコミット Wikiページ 課題追跡システム エスプレッソマシン(つまり、新しいウォータークーラー) コミュニケーション:全員が互いにコミュニケーションを取る能力を持ち、そうすることが奨励されるべきです。 信頼があるところには透明性があります。透明性があるところでは、人々は安全だと感じ始めます。人々が安全だと感じ、自分の仕事についてオープンであることが奨励されると、コミュニケーションは自然に起こります。 実装 前提条件をカバーしたので、フラットプロジェクト管理の実装について話し合うことができます。 プロジェクトリーダー:「でも、フラットな構造では誰もボスではないと思っていましたが?」確かに「指揮と管理」に従事する必要がある人はいませんが、ファシリテーターがいることは重要です。プロジェクトリーダーを、全員が調和して同じリズムで演奏していることを確認する指揮者だと考えてください。 記事を読む
デザインリリースの管理と設計意図の伝達 デザインリリースの管理と設計意図の伝達 1 min Whitepapers 最近の技術的進歩の多くが通信分野にあったことは、疑うまでもありません。インターネット、携帯電話、衛星通信、Facebookなどはすべて、より簡単に情報伝達やコラボレーションを行えるようにするためのものです。ところが、このような技術が手中にあるにもかかわらず多くの企業はECAD データリリースの伝達に苦労しています。コラボレーションの相手が社内の仲間や他の部署であるか、外部ベンダーであるかにかかわらず、設計の意図、変更、リリースの情報伝達にはやはり難しい点があります。 プロセスを管理する適切なプラットフォームがないと、設計の意図や状態をすべての関係者に知らせたり、コラボレーションしたり、フィードバック情報を要求したり、プロジェクトがライフサイクルのどの段階にあるのかを把握するのが困難です。現状では残念なことに、設計見直し会議を何度も開いたり、常にやり直しに迫られたり、プロジェクトが遅れたり、市場投入が間に合わなかったり、予算を超過したり、さらに悪い場合には現場で故障が発生し、製品のリコールなどという悪いニュースに発展する可能性もあります。 リリースプロセスが管理されていない場合の問題点 周知のとおり、製品の設計では、関与する多くの分野の部署すべてがプロジェクト全体を通じて同時並行的に作業する必要があります。設計のリリース前には、多くの場合、バージョン管理により設計の増分的な変更を取り込むことでプロジェクトのECADの部分が速く進むことがあります。通常、このような変更が行われる理由としては、設計範囲がまだ固定されていない、要件が変更された、あるいは場合によっては単に実際の設計仕 様を満たすために変更が必要である、などが考えられます。残念なことに、この段階のECADデータは常に変化するため、その時点でのライフサイクル情報が他の関係者に正しく伝達されません。全員が正しいデータに基づいて作業できるようにしてプロジェクトを成功させるためには、あるバージョンがWIP(Work in Progress: 作業中)であるか、承認段階であるか、製造部門にリリース済みであるかを把握することが不可欠です。そのうえで、正しいユーザーが、正しい場所から、正しい方法で、正しいデータにアクセスできるようにしなければなりません。このような処理をまだ手動で行っているようなシステムでは、いつかはプロセスを管理できなくなって失敗に終わり、次のような結果を招くことになります。 ECADのバージョンとリリースのデータが適切に管理されていない 間違ったバージョンの設計を製造部門に送ってしまうリスクが高い 期限切れの部品を使用してしまうリスクが高い 設計のリリース準備ができてから実際にリリースされるまでの時間の無駄が発生する 人が走り回って承認署名を得るため時間がかかる 標準化された設計プロセスの実施が困難である Aberdeen-Groupなどの業界調査によると、データの一貫性がないことによる問題の多くは、ECADの管理と自動プラットフォームが適切に配備 されていない低機能な情報伝達システムに起因しています。このようにECADデータのリリースを人手により伝達するような固定化されたプロセスでは、エンジニアが設計意図を確認するのに時間が掛かり設計サイクル全体が長くなってしまいます。特にエンジニアリングチームがグローバルに分散し ている場合は、情報が失われることも多く、プロセスがオフラインで行われるためデータの追跡管理や制御を行えません。リリースシステムに透明性が無いと、ECADデータをリリースする際に想定されたグループに設計意図が確実に伝達されず、十分な情報に基づく決定が行えなくなります。(※続きはPDFをダウンロードしてください) 今すぐ Altium 記事を読む
6層スタックアップ EMC EMC向上のための6層PCBスタックアップの設計 1 min Blog 6層のPCBは、高いネット数と小さいサイズを持つ様々なアプリケーションにとって、経済的で人気のあるスタックアップです。大きなボードは、4層のスタックアップで十分機能することがあり、信号層を犠牲にしてボードの各側間の隔離を確保できます。適切な6層スタックアップを使用すると、異なる層間のEMIを抑制し、高いネット数を持つファインピッチコンポーネントを収容できます。しかし、4層または8層のスタックアップを使用する方が理にかなっている場合もあり、この判断をするためには、ボード内のプレーン層の機能を理解することが役立ちます。 電源、グラウンド、信号プレーンはいくつ必要ですか? この質問への答えは非常に重要であり、実際にはボードのアプリケーションに大きく依存します。限られたスペースで密度の高いボードをルーティングしているが、すべてが低速またはDCの場合、2つのプレーン層と4つの信号層で十分なことがよくあります。しかし、その場合、創造的なレイアウトとルーティングで層数を4層に減らすことがよくあります。 EMIへの感受性を大幅に減らす必要がある場合、代替のスタックアップを使用し、より多くの電源/グラウンド層と少ない信号層を選択するべきです。これがデジタルボードまたは混合信号ボードである場合、信号を平面層に対して配置し、密接に配置された電源/グラウンド平面ペアを使用することで、EMI問題を引き起こすことなくボード全体に自由にルーティングするための柔軟性を得ることができます。 シールド缶のような不格好な解決策を必要とせずに、ボードの周りにさらにグラウンドを追加することも、大きな遮蔽効果をもたらすことができます。 デジタル信号とアナログ信号を混合する場合、高周波と低周波の信号を混合する場合、またはこれらのすべての組み合わせの場合でも、6層PCBスタックアップの創造的な使用が可能です。ある時点で、より大きなボードやスタック内の層を増やす(またはその両方!)必要があるかもしれません。6層PCBスタックアップのための多くの信号/平面層の組み合わせがありますが、以下にいくつかの一般的なものを示します。 6層PCBスタックアップの例 これを念頭に置いて、いくつかの6層PCBスタックアップの例を見てみましょう: 信号+電源/グランド/2信号層/グランド/信号+電源 この6層PCBスタックアップの例は、内部層の低速トレースを外層のトレースから遮蔽する人気のあるエントリーレベルのオプションです。また、固体平面への密接な結合もあります。信号は、直交している限り、低周波数/遅い切り替え速度で、または内部層を通してルーティングできます。私は、互いおよび内層の低速/周波数トレースからそれらを遮蔽するために、高速デジタルおよび/またはアナログ信号を外層にルーティングするでしょう。以下に例を示します。 これについては、アナログとデジタルを内層で混在させないでください。ただし、ボードの異なる領域にそれらを分離できる場合を除きます。しかし、デジタルとアナログのセクション間に分離が必要なその種の状況では、内部平面を持つ4層スタックアップで何とかなるかもしれませんし、創造的なレイアウト/ルーティングを行うか、または4層で好まれるSIG+PWR/GND/GND/SIG+PWRの配置を使用できます( ガイドラインについてはこちらを参照)。 このタイプのスタックアップでは、 レイヤー2を電源プレーンレイヤーにしないでください、また、L3+L4で平行にブロードサイド結合ペアを試みないでください。代わりに、信号レイヤー上でPWRをルーティングします。これに伴う主な問題は、電源とグラウンドプレーンレイヤー間の インタープレーン容量の欠如と、L1からL5への高インダクタンスのリターンパスです。これらのプレーンレイヤーが分離されているため、L1上の信号の予測不可能なリターンパスを補償するために、より多くのデキャップとグラウンドリターンビアが必要になります。この理由から、これらのボードは、正確なリターンパスの予測と追跡を必要としない電力またはDCシステムでのみ使用すべきでしょう。 信号/GND/PWR/GND/信号/GND この6層PCBスタックアップの例は、高速信号に多くのデカップリングを提供する必要があるが、信号用に3層分の密度が必要でない基板にとって良い非対称スタックアップです。一つの例は、高速(L1)と低速(L5)の信号の混在で、これらは互いに隔離され、密接に配置されたPWR+GNDプレーンペアが 高速電力整合性をサポートするための高いデカップリングを提供します。内部信号層は、2つのグラウンドプレーンの間に封入されるため、表面信号層から遮蔽されます。また、固体導体が効果的な遮蔽を提供するため、内部信号層がEMIの干渉を受けるのを抑制するのにも役立ちます。電源とグラウンドプレーンは、高速デジタルデバイスのための効果的なデカップリングを提供するために、おそらく密接に配置されるでしょう。 このスタックアップの主な問題点は、下層のグラウンドを切り取って部品を配置するスペースを作らない限り、上層にのみ簡単に部品を配置できることです。つまり、基本的には片面基板を構築していることになります。これは製造にとって高価な提案であり、内部信号層へのビアを配置するために多くのドリリングが必要になります。これは、4層または8層のPCBスタックアップの利点を強調しています。8層スタックアップでは、内部層に隣接する電源/グラウンドの同様の配置を作成しながら、内部ルーティングや下層の部品/ルーティングも収容できます。 信号/グラウンド/電源/信号/グラウンド/信号 記事を読む