PCB Design and Layout

Create high-quality PCB designs with robust layout tools that ensure signal integrity, manufacturability, and compliance with industry standards.

Filter
見つかりました
Sort by
役割
ソフトウェア
コンテンツタイプ
適用
フィルターをクリア
ダンピングと反射伝達における直列終端抵抗 ダンピングと反射の転送における直列終端抵抗 1 min Blog 伝送線路を含む基板では、トレース、ソース、および負荷インピーダンスのマッチングが重要です。これらの条件を達成するために、単終端伝送線路に直列終端抵抗を使用する設計がいくつか見られるかもしれません。これを行う理由は、信号を遅らせるため、またはドライバーの出力インピーダンスを設定するためであり、誰に尋ねるかによって異なります。 驚くかもしれませんが、終端用の直列抵抗の配置は時々誤解されます。生じる疑問のいくつかは: 直列抵抗を手動で配置する必要があるのはいつですか? 目標インピーダンスに伝送線路を設計するだけでよい場合はいつですか? 短い伝送線路と長い伝送線路では何をすべきですか? 直列抵抗を使用した場合の信号整合性において、負荷容量とグラウンドバウンスはどのような役割を果たしますか? 単終端線路と差動線路の間に違いはありますか? シグナリング標準にインピーダンス要件がない場合(例:SPIやI2C)にはどうすればよいでしょうか この記事では、高速GPIOやシリアルバスの観点から、上記のいくつかの質問を見ていきます。私たちはしばしば SPIのような標準を見て、インピーダンス要件が指定されておらず、バスが遅く動作するため、終端が不要であると簡単に仮定します。しかし、これはすべての場合に当てはまるわけではなく、任意の終端抵抗の配置は、注入される信号の立ち上がり時間、トレースの入力インピーダンス、およびライン上のオーバーシュートの減少に影響を与えます。 単端線上のシリーズ終端抵抗の2つの機能 シリーズ終端を使用する典型的な理由は以下の通りです: バスにはインピーダンス仕様がありません 出力インピーダンスと信号レベルは、特殊ロジックの目標値に調整されています プッシュプルドライバーは非常に迅速に切り替わります(数ns以下であることもあります) 受信機で見られる信号の立ち上がり時間は、負荷容量に依存します ドライバーからの出力インピーダンスは通常低いです ライン上にリンギングがあります 最後の点は、長い伝送線上の反射、または短い線上での過渡応答の励起の2つの要因によって引き起こされる可能性があります。前者はインピーダンスの不一致に関連していますが、後者は代わりにグラウンドバウンスの原因となる同じ要因に関連しています。 長い線上の反射:ドライバーの出力インピーダンスは常に伝送線の単終端インピーダンスよりも小さいため、ソースでの直列終端が時々使用されます。理想的な場合、出力インピーダンスは0オームですが、一般的には小さな非ゼロ値になります。終端抵抗の値をサイズする最も簡単な方法は、伝送線インピーダンスから出力インピーダンスを引くことです: 記事を読む
PCB設計におけるシリコンフォトニクス統合の課題 PCB設計におけるシリコンフォトニクス統合の課題 1 min Blog シリコンフォトニクスは、シリコンICで使用されている製造プロセスをそのまま使用します 最近のIEEEカンファレンスでリチャード・ソレフと会い、電子・フォトニック統合回路(EPICs)の現状について話し合う機会を得ました。彼はしばしば「シリコンフォトニクスの父」と呼ばれており、その理由は明らかです。彼に優しく頼めば、シリコン上に直接フォトニック回路としての基本的な論理ゲートをどのように構築するかを教えてくれるでしょう。 今はシリコンフォトニクスにとって画期的な時期です。この技術は数十年前から存在していますが、現在、大量商業化の寸前にあり、大衆に提供されようとしています。標準的な電子部品で動作するシステムにシリコンフォトニクスを統合する前に、克服すべきいくつかのエンジニアリングの課題がまだあります。 ICおよびPCB設計における100 Gbps+の課題 ここまで読んでまだ混乱している人のために、いくつかの背景を説明します:フォトニック回路とは、光のみを使用して動作する回路要素です。これらの回路は、光学および電子工学のコミュニティで主要な話題です。12年前、設計者は銅を介して100 Gbpsでデータを転送できる単一リンクの作成について話していました。 銅は短距離で100 Gbpsのデータ転送を可能にすることがわかり、一方で光ファイバーは長距離で最適に機能します。遅い機器でも並列化を使用して、データレートを100 Gbpsや400 Gbpsに増加させることができます。100 Gbpsネットワークで動作するために必要な光学機器は、非常に特定の設計要件を持ち、すべての電子部品と普遍的に互換性があるわけではありません。 データレートが増加するにつれて、PCBやIC内の電気信号の整合性の問題がより顕著かつ目立つようになり、その結果、信号の立ち上がり時間が短くなります。ICレベルでは、データレートの増加に伴い、相互接続遅延時間、伝播遅延時間、およびクロストークの強度がすべて増加します。PCBレベルでは、クロストーク、 放射されたおよび伝導されたEMI、および熱管理が、高速設計の重要な考慮事項となります。光学部品は、電子部品で見られる同じ信号整合性の問題に悩まされない、より高帯域幅の解決策を提供します。電子IC設計におけるより大きな並列性は、光学部品によって提供されるより高帯域幅の解決策を必要とします。 フォトニック集積回路(PIC)と電子・フォトニック集積回路(EPIC)に注目してください。前者の回路は、多数のフォトニック要素を単一のパッケージに統合して、完全に光で動作するように設計されています。後者の回路は、光を使用して動作するように設計されていますが、これらの回路には電子要素が現れることがあります。したがって、これらの回路は、電子部品の帯域幅に応じて、標準的な電子部品ともインターフェースできます。 なぜフォトニクスで、なぜシリコン上なのか疑問に思うかもしれません。シリコン製造所とチップ製造能力の成熟度は、これらの伝統的な製造プロセスをフォトニック回路に即座に適応させることができることを意味します。もし私たちが近いうちにPICやEPICを見ることになるなら、それらは最も確実にシリコンフォトニクス技術に基づいて構築されるでしょう。 将来的には、これらのICをPICやEPICとインターフェースすることになるでしょう PCBでのシリコンフォトニクスの使用における課題 シリコンの素晴らしい点は、1550 nmの波長で透明であるため、1550 記事を読む
2019年の製造のための設計に関するトップ5のヒント 2019年の製造のための設計に関するトップ5のヒント 1 min Blog 最近、ある大手の電子業界ブログを閲覧していたところ、「製造のための設計」に関するトップ10の間違いについての記事を見つけました。面白くて斬新な内容かもしれないと思い、その記事を読みましたが、驚いたことに、それは10年前に読んだ記事のコピー&ペーストであり、その記事自体もほぼ10年前の記事の焼き直しでした。古い記事を再加工して「新しい」コンテンツとしてラベリングするのは好きではありません。なぜなら、それは誤った経験則や、さらに悪いことに、無効な「業界のベストプラクティス」を作り出し、永続させる主な方法だからです。電子業界は非常に急速に変化するため、10年以上前に書かれたほとんどのコンテンツは今や時代遅れです。これらの記事で言及されているトップの間違いのいくつかを見て、それらに光を当て、そして今日の業界基準に関連する実際のトップのヒントをいくつか考えてみましょう。 トップの間違いの中のトップの間違い 鋭角を避ける 2019年後半になりましたが、私たちは最も安価で些細なプロトタイプのPCBでさえ、エッチングプロセスに問題があったとしても、任意の電気的欠陥がある基板を排除するためにフライングプローブチェックを受ける時代にいます。以前読んだ古い記事が私たちに避けるよう警告した最大の間違いは、鋭角でした。なぜなら、それらは酸の罠を作り出す可能性があるからです。トナー転写と自宅でのエッチングを使用している場合、これは真実かもしれませんが、現代の製造方法では、これは問題になりません。 フォトアクティベートされたレジスト層を持つボードに使用される光活性エッチング溶液は、ボードファブで非常に一般的です。これらのエッチャントは、鮮明なシャープな特徴を与え、エッチャントが溜まっても、十分な光を得られないため活性化しません。家庭でも非常に簡単に光活性レジスト層を使用することができます。現代のエッチングプロセスは、過去に比べて酸の罠のリスクを大幅に減少させます。 ビア・イン・パッドを避ける 一般的には、ビア・イン・パッドを間違いだと考えています。しかし、その記事では、熱的な理由からビア・イン・パッドを使用すべきだった例を挙げていました。多くの高電流デバイスは、メーカーがフットプリントに対して推奨するほど、ビア・イン・パッドを必要とします。それが、パッケージから効率よく熱を取り除く唯一の方法です。 その記事では、ビア・イン・パッドを使用すると、すべてのはんだが吸い取られてドライジョイントが残ると主張していました。これは100%真実です。確かに毛細管作用によりはんだが引き抜かれますが、ビアの両側をテント処理することでこれを完全に防ぐことができます。特定のケースでは、パッドにはんだマスクを全くしたくない場合、パッドと反対側のビアだけをテント処理することができます。これは、0.4mmまでのビアに対してかなり信頼性がありますが、まだ不安な場合は、ビアの反対側にシルクスクリーンを追加することもできます。これにより、ビアが完全にキャップされることが保証されます。 偶然にも、パッド上のビアだけに注意すべきではありません。テント処理されていないビアをパッドの非常に近くに配置すると、そのビアがパッドからはんだを吸い取る可能性もあります。 複数の工具サイズの使用を避ける 製造業者が非常に厳しい公差で作業する場合、ボード上に似ているが完全に同一ではない穴のサイズを多用すると、ボードのコストが増加する可能性があるという記事の主張でした。しかし、今日のドリリング技術を見ると、これは真実からはほど遠いです。産業用PCBドリルのツールマガジンには、人類が知る限りのほぼすべてのマイクロドリルサイズが含まれており、ツールの交換は信じられないほど迅速です。たとえ13.5milと14milの穴がそれぞれの正確なサイズのドリルビットで穿たれたとしても、PCBシートごとに追加で数秒しかかからないかもしれません。一般的に、ボード製造業者は、これらの穴を公差要件内、または図面で指定した公差内である限り、すべての穴を一つのサイズに丸めます。 PCBのスロットについても同様です。非常に小さいスロット(30-40mil)を使用しても、または20milエンドミルでスロットの角を大きな工具で四角くするための別のフライス加工ルートを指定しても、ペナルティを課されたPCB製造業者にはまだ出会っていません。 パッド上のシルクスクリーンを避ける 密に配線されたボードでは、あるコンポーネントのシルクスクリーンが別のコンポーネントのパッドに乗るのを避けることは不可能かもしれません。この正確な理由から、私のAltiumライブラリでは、ピン1の指示器シルクスクリーンドットと、可能な限りコンポーネントの下にシルクスクリーン機能を使用して、向きを簡単に判断できるようにしています。まだ、パッドからシルクスクリーンを自動的にクリーニングしてくれる、または少なくともそれを希望するかどうか尋ねてくれる予算のある、または高価なボードハウスには出会っていません。 もしパッドにシルクスクリーンがあるボードを受け取った場合、そのパッドでのはんだの濡れ広がりに大きな問題を引き起こし、それが悪い接合を引き起こす可能性があります。しかし、今日の製造業者では、私が経験したことのない問題です。 パッド間にはんだマスクを追加しない この「間違い」を見ると、ただただ頭を振るしかありません。どうしてボード上のパッド間にマスクを追加するのを忘れることができるのでしょうか?Altiumやほぼすべての設計ツールがこれを自動で処理してくれます。多くの細ピッチコンポーネントは、パッド間にはんだマスクを許容しないクリアランスギャップを持っています。それにもかかわらず、Altiumがパッド間に1/1000ミル幅のマスクを生成するのを見たことがあります。Altiumのデフォルトの設計ルールでも、パッド間のはんだマスクを指定するのに完璧に機能します。 パッド間のマスクが小さすぎる場合、良心的な基板製造業者は進行する前に知らせてくれますし、あまり気にしない基板製造業者はその機能を削除してそのまま進めます。 サイズが間違ったフットプリント 数年間、私は実際に購入可能な部品をスキーマティックキャプチャレベルで設計に配置できる大規模なオープンソースのデータベースライブラリを公開してきました。完全で正確な3Dモデルと、Altiumの3Dボードビューおよび3Dボディの衝突チェックを使用すると、部品が衝突する設計を完成させることは非常に難しくなります。Concord 記事を読む
デジタルICにはどのサイズのデカップリングコンデンサを使用すべきですか? デカップリングコンデンサの計算:デジタルICにはどのサイズを使用すべきですか? 1 min Blog これらのデカップリングコンデンサは適切なサイズですか? PCB設計ガイドライン、特に高速デジタル設計の「専門家」が繰り返し指摘することの一つに、適切なデカップリングコンデンサのサイズを見つける必要性があります。これは、これらのコンデンサがPDNで何をすることが期待されているのか、また電源の整合性を保証する上での彼らの役割を完全に理解せずに対処されることがあります。また、デジタル集積回路の電源ピンとグラウンドピンをブリッジするために、3つのコンデンサ(通常は1 nF、10 nF、100 nFなど)を配置するという数十年前のガイドラインをデフォルトとするアプリケーションノートも多く見かけます。過去には、これで十分だったかもしれません。高速デジタルコンポーネントで生じる電源の整合性の問題は、コア電圧に干渉するほど悪くなかったので、3つのコンデンサが行う仕事は十分でした。 今日の高速集積回路は、複数の出力を持ち、コア電圧が低い(1.0Vまで低い)ため、昔の遅いコンポーネントよりもはるかに厳しいノイズ制約を持っています。厳しいノイズ制約とは、より正確なデカップリングが必要であることを意味します。このため、今日の比較的強力なMCUやその他多くのデジタルコンポーネントを扱う設計者は、デカップリングキャップを適切にサイズする方法を知っておく必要があります。では、最良の方法は何でしょうか?一般的に、これを行う方法は2つあります。それぞれを見て、デカップリングキャパシタの値を計算する方法と、なぜ古い「3つのデカップリングキャパシタの神話」が現代の高速デジタル設計では関係ないのかを見てみましょう。 等価キャパシタモデルの理解 デジタル設計に必要なデカップリングキャパシタのサイズを決定する前に、キャパシタの基本的な回路モデルを理解する必要があります。キャパシタが理論通りに振る舞うと思いたいところですが、実際にはそうではありません。すべてのキャパシタには、そのインピーダンススペクトルを定義するリード上にある程度のインダクタンスがあり、これは実験的に直列RLCネットワークとしてモデル化されます: キャパシタをモデル化するための等価RLC回路 このモデルでは、ESRとESLはそれぞれ等価直列抵抗と等価直列インダクタンスです。Cの値は、コンポーネントのデータシートに記載されているキャパシタンスとして取ることができます。最後に、Rの値はキャパシタを形成する誘電体の導電率を考慮しています。これは、キャパシタが充電されて回路から取り外された後に発生する一時的な漏れ電流を考慮しています。この値は通常、無視できるほど大きいです。 このモデルでRを無視すると、値(ESR/(2*ESL))は、回路の端に接続された負荷が0オームであると仮定した場合の等価回路の減衰定数です。これは、回路がフル充電/放電下で入力電圧の変化に対応するために必要な最小時間です。キャパシタのデータシートには減衰定数は記載されていませんが、代わりに下記のようなインピーダンススペクトルグラフを示しています。必要であれば、データシートのESLとESRの値を使用して減衰定数を計算することができます。 最後に、 すべての実際のキャパシタには自己共振周波数があり、任意の直列RLC回路の値と等しく、この場合は次のとおりです: 自己共振周波数は、インピーダンススペクトルグラフで確認できます。以下に、実際のAVXキャパシタの例を示します。 デカップリングキャパシタは実際に何をするのか? これは、デジタル集積回路の電力整合性を保証するためにデカップリングキャパシタが必要な理由を理解するのに非常に役立つ素晴らしい質問です。全てのキャパシタは、直流電源に接続されたときに平衡状態で電荷を蓄えます。キャパシタ内の板は充電され、総電荷量はQ = CVに等しくなります。もしVが変動したり少し落ちたりすると、その電荷Qの一部が放出され、小さな電池のように負荷に供給されます。 デジタル回路に接続された実際のコンデンサーで生じる問題は、電圧降下が単一の周波数で発生しないことです。ソース電圧の時間依存の変動や回路への突然の電流バーストは、オシロスコープ上で鋭いエッジレートを持つスパイクのように見えることがよくあります。これは、その信号に関連するパワースペクトラムが一連の周波数にわたって広がり、自己共振と重なることを意味します。結果として、コンデンサーは応答して放電し、 電源バス上に一過性の振動を引き起こします。この電力が電源バス上のデジタルコンデンサICによってPDNに引き込まれる場合、電源バス上の一過性は電源ピンでのリンギングとして現れます。しかし、適切なデカップリングコンデンサのサイズと数が選択されれば、この変動は最小限に抑えることができます。これが、3つのコンデンサの持続的なガイドラインがある理由です。それは、安定した電力を確保しようとする際に、最も悪くない配置とサイズ付けです。 記事を読む
対称ストリップラインインピーダンス計算機と公式 対称ストリップラインのインダクタンスまたはインピーダンス計算機と公式 1 min Blog 以前の記事 では、表面および埋め込みマイクロストリップトレースの インピーダンスを計算する際に、異なる計算機を使用すると生じる不整合について見てきました。前の記事で述べた多くの問題は、ストリップラインインピーダンス計算機にも当てはまります。対称ストリップラインは、非対称ストリップラインよりも、数値的にも解析的にも対処しやすいです。ここでは、対称ストリップラインのさまざまなインピーダンス公式と計算機の短い比較を行います。 IPC公式とワデルの方法 マイクロストリップインピーダンス計算機の場合と同様に、ストリップラインインピーダンス計算機は、IPC-2141公式またはワデルの方程式に依存する傾向があります。計算機がこれらの方程式を適切な近似の下で実装しているかどうかは常に慎重に確認するべきです。始めるために、この記事の方程式で使用される記号は、以下に示される幾何学に対応しています: 対称ストリップラインの幾何学 多くの計算機は、上記の図の幾何学的パラメータに対するさまざまな限界について、方程式を一連の近似に分割します。これらの方程式は、ワデルの方法を使用して見つけることができます。特定の(相互に排他的ではない)近似の下で、以下の方程式はストリップラインのインピーダンスを定義します: 狭いストリップのためのストリップラインインピーダンス方程式 広いストリップラインの場合、上記の方程式はフリンジ容量係数の観点から次の方程式に簡略化されます: 広いストリップのストリップラインインピーダンス方程式 上記の解は、IPC-2141規格で明確に定義されています。一般に、これらの方程式は実験結果と比較して約1%の誤差を生じますが、これはマイクロストリップ伝送線のIPC標準方程式よりもはるかに高い精度です。IPC-2141標準が正しい定義を使用している一例です。 良い計算機は、関連する限界を自動的に区別し、ユーザーの入力に基づいて正しい方程式を適用します。他の計算機は、ユーザーが狭いストリップラインまたは広いストリップラインを指していると仮定しますが、計算機の適用可能性を明示的には述べません。ストリップラインのインピーダンスを計算する際に、計算機が上記の二つの限界のいずれかを定義しているかどうかを必ず確認してください。 一部の計算機は直接互いを模倣しているため、同じタイプの誤りを含むことがあります。特定の近似の下でのみ有効なストリップラインインピーダンス計算機のために定義された他の方程式もあり、それらは実際には上記の方程式の簡略化です。著者の意見としては、これらの他の方程式は避けるべきだと考えられます。 限界 T = 0 での代替解は、第一種楕円積分の形で書くことができます。自分のストリップライン計算機を作成することに興味がある開発者は、この積分を評価するための標準的な数値アルゴリズムを簡単に実装できます。興味のある読者は、この方程式についての コーンのオリジナル論文を参照してください。 伝送線との関係 記事を読む