Skip to main content
Mobile menu
Discover
Develop
Agile
リソース&サポート
リソース&サポート
ラーニングハブ
サポートセンター
マニュアル
Webセミナー
Altium Community
フォーラム
バグの報告
アイディア
Search Open
Search
Search Close
サインイン
PCB設計
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
ホーム
PCB設計
PCB設計
業界をリードする専門家によるPCB設計の最新情報をご覧ください。
Learn How Altium Supports PCB Designers
Overview
All Content
ウェビナー
Filter
見つかりました
Sort by
最新
人気順
タイトル(昇順)
タイトル(降順)
役割
ECADライブラリ管理者
電気技術者
技術マネージャー
ITマネージャー
機械エンジニア
PCB設計者
購買・調達マネージャー
ソフトウェア
Altium Designer
Altium 365
Assembly Assistant
BOM Portal
Configurable Workflows
GovCloud
MCAD CoDesigner
Octopart
Requirements & Systems Portal
SiliconExpert
Z2Data
コンテンツタイプ
ガイドブック
ビデオ
ウェビナー
ポッドキャスト
ホワイトペーパー
適用
Americas
EMEA
ANZ
APAC
Altium 365: クラウド対応電子機器実現の最先端
1 min
OnTrack
このインタビューでは、Altiumのチーフソフトウェア設計者であるLeigh Gawneに、 Altium 365と、クラウド対応電子機器の実現が設計技術者と業界全体に与える影響について考えを聞きました(2019年のPCB設計サミット「AltiumLive 2019 San Diego」で、Leigh Gawneがチームと共同で、Altium 365を使って基板をライブで設計する様子は こちらのビデオでご覧いただけます)。 Judy Warner: Leighさん、これまでの経歴とアルティウムでの現在の役割についてお聞かせください。 Leigh Gawne: 私の肩書は年を追うごとに少しずつ変わり、自動車業界の組み込みソフトウェアとシステムの開発に携わったり、さまざまな分野のハードウェア開発技術者や、独立した設計コンサルタントとして働いてきました。 2010年に組み込み用コンピューターモジュールを提供するToradexに最高技術責任者として入社した後、BOM管理に特化した企業であるCiivaを共同で設立しました。Ciivaは2013年にToradexから独立し、2015年にアルティウムに買収されました。 ここ4年ほどは、Ciivaの多くのテクノロジーとサービスをAltium Designerに統合し、Altium 365プラットフォームを支える基盤の構築や提供を担当してきました。現在は、アルティウムのチーフソフトウェアアーキテクトをしています。
記事を読む
複数のオブジェクトをまとめて編集
1 min
Blog
Altium Designerは豊富な機能に加え直観的な操作性を備えており、最小限の操作で回路図を編集する事ができます。配置済のオブジェクトの移動や属性の変更は、マウスのドラッグやダブルクリックで簡単に行う事ができ、コマンドの選択すら必要ありません。 しかし、回路図が完成に近づくにつれ、属性の編集が作業の大半を占めるようになり、短時間に回路図を仕上げるにはこの段階での作業時間の短縮が必要になります。 プリント基板CADの Altium Designerには複数のオブジェクトの属性をまとめて編集するための機能が複数用意されています。これらをうまく利用すれば、属性変更の手間を省き、素早く回路図を仕上げる事ができます。 [類似オブジェクトの検索]機能と[Properties]パネルを使って一括変更 [Properties]パネルを使って、[セレクト]された複数のオブジェクトの属性を同時に書き換える事ができます。複数のオブジェクトの[セレクト]は、[Sift]キーを押しながら対象をマウスでクリックする事によって行えますが、[類似オブジェクトの検索]機能を使えば多数のオブジェクトを一度に[セレクト]する事ができます。 この方法による一括編集は、以下の手順で行います。 一括編集したいオブジェクトのうちのどれか1つにマウスのカーソルを置き、右ボタンをクリック。 表示されたポップアップメニューから[類似オブジェクトを検索]を選ぶ。 [類似オブジェクトの検索]ダイアログボックスが現れ、ここで一括編集の対象を絞り込むための検索条件を設定する。 検索条件の設定を終えた後、ダイアログボックスの下部にあるチェック項目の中の、[一致範囲セレクト]にチェックを入れる。 [類似オブジェクトの検索]で多数のオブジェクトを一度に[セレクト] [類似オブジェクトの検索]画面に検索条件を設定し、一致したオブジェクトをセレクトする。この例では、ネット ラベルを検索し、全てのネットラベルを[セレクト]。[一致範囲セレクト]にチェックを入れる事が必要。また [プロパティを開く]がチェックさていれば、この画面を[OL]ボタンで閉じた後、[Properties]パネルが自動的に開く。 全ての設定を終えた後[OK]ボタンを押す事により、検索条件に一致したオブジェクトが[セレクト]されダイアログボックスが閉じる。ダイアログボックスを閉じる前に検索結果を確認したい場合には[適用]ボタンを押す。 回路図上のオブジェクトが意図どおりに[セレクト]された事を確認した後、 [Properties]パネルを開いて属性値を入力する。これで[セレクト]された全てのオブジェクトの属性が同時に更新される。
記事を読む
真空管アンプのシミュレーションを試す
1 min
Blog
電子機器に使用されるスイッチング・増幅素子は、真空管に始まりトランジスタに進化しました。そしてその後、多くのトランジスタと周辺回路を1つのパッケージに集積したIC (Integrated circuit)が現れ、集積度は急速に向上し続けています。 デジタル機器の心臓部にICが使われるようになってからもう半世紀以上経ちますが、その間の進化は凄まじく、最近のCPUには1パッケージに400億個ものトランジスタを集積したものもあり、その端子数は4,000を越えています。ちなみに、ハリネズミの毛の本数は5,000~7,000本だそうです。 このような進化の中、古いデバイスも姿を消しておらず、さまざまな世代のデバイスが使い続けられています。今では過去の遺物のように見える真空管でさえ、音を扱うアナログ機器の分野ではまだ現役を保っています。 そしてAltium Designerでは先端技術だけでなく、古い世代の技術に対してもサポートされており、シンボルライブラリやサンプル回路図などにその一端を見る事ができます。 真空管アンプのシミュレーションを試す Altium Designerは A/D混在回路シミュレータを備えており、この機能を試すためのサンプルデータとして、ディスクリート部品で構成された多数の回路が用意されています。そしてその中に真空管アンプが含まれており、Altium Designer がサポートする古典的なアイテムの一例としてこれを取り上げ、シミュレーションを試してみました。 サンプル回路を開く 真空管アンプのサンプル回路は[Vacuum-Tube Power Amplifier.PRJPCB]に含まれています。このプロジェクトを読み込み、[Vacuum-Tube Power Amplifier.schdoc]を開くと画面には真空管パワーアンプの回路図が現れます。 [Vacuum-Tube
記事を読む
モータードライバー用PCBでPDN Analyzerを素早く開始
1 min
Altium Designer Projects
前回のブログでは、 単一のICを使った単純なブラシ付きDCモーターコントローラーの設計について説明しました。比較的シンプルな基板ですが、両方のモーターがドライバーのチャンネル当たりの最大定格電流で動作している場合、最大4Aの電流を流します。このような単純な基板の場合は、トレースの長さと幅を調べ、オンライン電卓を使用して (または、ちょっとした計算をして)、トレースの電流密度を算出し、負荷への対応方法を確認することができます。ただし、より複雑な基板の場合は、たちまち面倒な状況になる可能性があります。電流を流すポリゴン、さまざまなトレース幅の混在、配線に沿ったコンポーネント、その他の複雑なPCB機能がある場合、基板が目の前の作業に対して十分かどうかを計算することが難しくなります。 銅箔層上の電流密度を視覚化できれば、より最適な設計を決定することができます。 これは、私がPDN Analyzerで非常に気に入っているところです。複雑な基板向けのセットアップには若干の作業が必要ですが、いったん完了すれば、回路基板の電流および電圧を最適化して、わかりやすく表示できます。マイクロコントローラーやFPGAに電力を供給するだけの場合でも、PDN Analyzerを使用すると、電流密度が高すぎたり、配線上の電圧降下が限界を超えている場所をすばやく視覚化できます。専門知識が不足している関係者に向けて、回路基板の視覚的なマップをすばやく作成して、潜在的な問題を強調表示することもできます。これにより、基板が予想どおりに動作するよう、仕様を少し変える (基板面積を広げる) 必要があるかもしれない理由を確認できます。 PDN Analyzerを初めて使用する読者の方には、ダウンロードしてそれに沿って説明を理解できるような基板を作成し、電力ネットワークを設定して、解析について説明し、ツールの使用方法を習得していただきたいと考えました。 Altium Designerのマニュアルには 初めての操作の例が記載されていますが、私が構築したモーターコントローラープロジェクトははるかに簡単で、基板上のすべてのネットの電力ネットワークをすばやく設定することができます。これにより、時間に追われている読者の方があっという間にツールを開始できることを願います。また、 PDN Analyzerの入門ガイドの完全版もあり、インストール、およびライセンス認証を行ってから利用できます。さらに、 PDN Analyzerのマニュアルもご利用になれます。 設定 PDN
記事を読む
高速信号のための遅延調整:知っておくべきこと
1 min
Thought Leadership
PCBにおける長さが一致したライン オシロスコープで2つの信号の読み取りを見ると、信号トレース間の長さ/タイミングの不一致が下流のゲートを不適切にトリガーすることがどのようにして起こるかがわかります。マスタークロック信号の伝達時間と、異なるコンピュータインターフェースで送受信されるデータの往復時間を見ると、状況はさらに悪化します。SDRAMは、スレーブデバイスにクロックを配置し、取得したデータと一緒にクロック信号を送信することで、この問題をうまく解決しています。一方、他のインターフェース(USB 3.0、SATAなど)は、データから直接クロック信号を抽出します。 私たちの残りの部分にとって、複数の並列インターコネクト、差動ペア内のトレース、そしてクロック信号の間での遅延調整は、データが正しい場所に正しいタイミングで到着することを保証します。長さ調整スキームを適用するには、単なる長さではなく、異なる信号/インターフェース標準での信号遅延時間を扱う必要があります。遅延調整の設計と信号を同期させるために知っておくべきことはこちらです。 遅延調整対長さ調整 長さ調整と遅延調整は基本的に同じ考え方を指します。目標は、一致したネット群内の信号トレースの長さを同じ値に設定することです。この考え方の目的は、すべての信号がある制約されたタイミングの不一致内で到着するようにすることです。一致したグループ内で二つの信号トレースが不一致の場合、通常の方法は、より短い信号トレースにいくつかの迂回を追加することによって遅延を追加し、信号を同期させることです。 トロンボーン、ノコギリ波、アコーディオンの迂回は、トレースに遅延を追加する典型的な方法です。 クロック信号と複数の信号線の間、差動ペア内、またはクロック線がない複数の差動ペア間で遅延調整を適用する場合でも、信号の特定のタイミング許容範囲を知る必要があります。SerDesチャネルの差動ペア受信機とコンポーネントでは、各信号間で許容される長さの不一致を決定する制限要因は、信号の立ち上がり時間とインターコネクト内の伝播遅延です。 異なるデータレートで動作し、 異なる信号規格を使用するインターフェースは、異なる許容される長さまたはタイミングの不一致を指定します。これらの不一致値は通常、FR4上で作業していると仮定していますが、異なる誘電率定数を持つ基板上でのより専門的な設計は、異なる長さマッチングの制約を伴います。ボードのI/Oチャネルを計画する際には、ボードの許容される長さの不一致値を調べ、この許容される不一致をタイミングの不一致に変換する必要があります(下記の方程式を参照)。 タイミングの不一致を扱う タイミングの不一致を長さの不一致の代わりに扱うことは、遅延調整の中心的な考え方です。長さの不一致のみを考慮するPCB設計ソフトウェアを使用している場合は、特定の基板に対して正しい長さの不一致を計算する必要があります。長さの不一致は、特定の基板での信号速度(単位:in./ps)にタイミングの不一致を乗じたものに等しいです: 信号速度の方程式(単位:in./ps) 一般に、 誘電率が大きい基板は信号速度が低下し、これにより2つの信号間の許容される長さの不一致が増加します。同様に、標準コンポーネントを過剰に駆動している場合、立ち上がり時間が短くなり(スルーレートが高くなり)、タイミングに対する制約も厳しくなります。一次近似として、信号の立ち上がり時間を半分にすると、許容されるタイミング制約も半分に切り下げるべきです。 許容される不一致は、通常、立ち上がり時間ではなく、クロック周期の許容誤差の観点で定義されます。与えられたクロック周期において、許容される長さの不一致は信号速度に反比例します。誘電率(例えば、FR4)を仮定して引用される長さの不一致がある場合、 特定の基板材料の信号速度を使用して長さの不一致を変換する必要があります。 差動ペアにおける位相の不一致 「位相ミスマッチ」という用語は、長さ調整や遅延調整と同じ文脈で使われることがありますが、 差動ペアを扱う際に重要な影響を及ぼします。差動ペアのルーティングでは、異なるペアが変則的に配置されたビアを通過する必要がある場合など、ペアの各端が非結合状態になる短い領域が生じることがあります。これは、ペア全体の長さが不一致であることに加えて、一致させる必要がある複数のペアがある場合もあります。
記事を読む
伝送線路におけるインピーダンス整合の重要性
1 min
Blog
これらのトレースにおける伝送線の臨界長をご存知ですか? デジタル信号であれアナログ信号であれ、ソース、伝送線、負荷間で インピーダンスを一致させる必要があるでしょう。伝送線においてインピーダンスマッチングが重要な理由は、線を下って送られる5Vの信号が受信側で5Vの信号として認識されるようにするためです。伝送線のマッチングが重要な理由を理解すれば、これをいつ、ドライバー側または受信側のどちらで行う必要があるかを理解し始めることができます。 インピーダンスマッチングについて話すとき、ドライバー、伝送線、受信機のインピーダンスを同じ値に設定することを指します。これは通常、単終端伝送線の場合は50オームですが、差動信号規格ではインピーダンスマッチングのために異なる値を指定する場合があります。ここでは、伝送線におけるインピーダンスマッチングがなぜ重要なのか、そしてPCB内接続で一貫したインピーダンスを実装する方法について説明します。 インターコネクトがインピーダンスマッチされる3つのケース 伝送線におけるインピーダンスマッチングの目的は、インターコネクト全体にわたって一貫したインピーダンスを設定することです。ドライバー、受信機、および伝送線のインピーダンスが一致している場合、いくつかの重要なことが起こりますが、これについては以下で説明します。伝送線においてインピーダンスマッチングが重要である理由を議論する際には、以下のケースを取り上げるべきです: ドライバー、線、および受信機が同じインピーダンスにマッチしている。これは完全なマッチングのケースと考えることができます。この場合、線の入力または出力で反射がなく、最大の電力が受信機に下流へと伝達されます。信号の電圧は、散乱損失、吸収、および DCおよびスキン効果の損失のためにのみ減少します。 ドライバーと受信機がマッチしているが、線がマッチしていない。この場合、信号が伝送線に導入されるとすぐにいくらかの反射が発生します。言い換えると、線がドライバーにマッチしていない場合、供給された信号の一部がドライバーに反射されます。これは、一部の電力が伝送線に伝達されるのを効果的に防ぎます。同様に、受信機の端で反射が発生し、信号がドライバーに戻ります。 入力インピーダンスは、ドライバーから受信機へ 最大電力が伝達されるかどうかを決定します。短い伝送路の場合、伝送路のインピーダンスは、伝送路が非常に短いときに負荷のインピーダンスのように見えます。 この重要な長さについては別の記事で取り上げられています。次の方程式を使用して、正確な入力インピーダンス(最初の信号反射後の伝送路のインピーダンスとして定義)を決定できます: 損失のあるおよびない伝送路の入力インピーダンス ドライバー、受信機、および線はすべて不一致です。この場合、伝送路の長さは関係ありません。信号が線を伝わるにつれて連続的な反射が発生し、受信機によって見られる電圧の望ましくない階段状の増加が生じます。ドライバーと受信機が不一致であるため、たとえ線が非常に短くても、ドライバーから受信機へ最大電力を伝達することはできません。 伝送路におけるインピーダンスマッチングの重要性:反射 ドライバーと伝送路がマッチしている場合、伝送路の入力での反射を抑制できます。しかし、この場合、ラインが受信機にマッチしていないと、受信機で反射が発生します。同様に、ラインがドライバーと受信機のどちらともマッチしていない場合、反射により一部の信号が実質的に失われます。ライン、ドライバー、受信機のインピーダンスを同じ値に設定することで、信号が受信機に伝達されることを保証します。 インターコネクトの二つの部分の間のインターフェースでのインピーダンスマッチングは、そのインターフェースでの反射を防ぎます。インピーダンスの不連続性(つまり、ドライバー-ラインインターフェース、またはドライバー-ソースインターフェース)で反射が発生すると、信号レベルに急激な変化が生じ、 過渡応答がインターコネクトで生じます。結果として生じる反射は、望ましい信号レベルの上に重ねられたリンギング(つまり、オーバーシュート/アンダーシュート)として現れるほか、デジタル信号では階段応答も可能性があります。反射は、デジタル信号かアナログ信号かによって、別の問題を引き起こします。 デジタル信号での反射 不整合伝送線路での繰り返し反射は、受信機と送信源で見られる電圧に階段状の応答を生じさせることがあります。この階段状の応答は、信号レベルの徐々な増加(下記の例を参照)や、上下に階段状の応答として現れることがあり、どちらも後続の入力信号に干渉します。その結果、受信機で見られる電圧は時間と共に変動することがあります。下記の例で示されているように、各反射で生じる電圧変化の上に典型的な過渡応答は明確さのため省略されています。
記事を読む
OnTrackニュースレター: Altium Designer 20の新機能の初公開、インピーダンスの測定、思考の材料 - 2019年11月
1 min
OnTrack
OnTrackニュースレター 2019年11月 第3巻第6号 初公開! Altium Designer 20の新機能 Altium Designer 20は2019年11月にリリースが予定されます。この製品について長年の経験を持つアルティウムのメンバーが、この最新リリースの特長について解説します。VP of Corporate MarketingのLawrence Romineと、Technical Marketing DirectorのBen Jordan(2人とも技術者)が、お気に入りの新機能と、日常的な設計作業に最も大きな影響を持つと思われる機能について解説します。 記事を読む インピーダンス計算のコントロール 動画を見る
記事を読む
Pagination
First page
« First
Previous page
‹‹
ページ
100
現在のページ
101
ページ
102
ページ
103
ページ
104
ページ
105
Next page
››
Last page
Last »