Skip to main content
Mobile menu
PCB設計
Altium Designer
世界中の設計者に支持される回路・基板設計ソフトウェア
CircuitStudio
エントリーレベルでプロ仕様のPCB設計ツール
CircuitMaker
個人、オープンソース、非営利団体のための無料PCB設計ツール
Altiumに乗り換える理由
他のPCB設計ツールからAltiumに乗り換える理由と方法を確認する
ソリューション
Altium Enterprise ソリューション
デジタルトランスフォメーションへの 最終ステップ
電子部品プラットフォーム
世界中の技術者が利用するOctopart
Altium 365
リソース&サポート
製品情報
無償評価版
ダウンロード
リソース&サポート
Renesas / Altium CEO Letter To Customers
ラーニングハブ
サポートセンター
マニュアル
Webセミナー
コミュニティ
フォーラム
バグの報告
アイディア
教育
専門家育成トレーニング 資格取得プログラム
Courses & Certificates
Training Previews
On-Demand
Instructor-Led Trainings
大学・高専
Programs
Educator Center
Student Lab
Altium Education Curriculum
オンラインストア
Search Open
Search
Search Close
サインイン
多層基板&マルチレイヤースタックアップ
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
ホーム
多層基板&マルチレイヤースタックアップ
多層基板&マルチレイヤースタックアップ
多層基板設計とレイヤスタックアップの詳細について、リソースライブラリをご覧ください。
PCB Stackup Basics
Overview
All Content
Filter
見つかりました
Sort by
最新
人気順
タイトル(昇順)
タイトル(降順)
役割
電気技術者
PCB設計者
ソフトウェア
Altium Designer
Octopart
コンテンツタイプ
ビデオ
高速設計とHDIボードのためのPCB材料特性の比較
1 min
Blog
PCB材料の比較表をお探しですか?次の高速またはHDI PCBに向けて、PCB材料の特性を比較した当社の比較表をご覧ください。
記事を読む
高Dk PCB材料の利点
1 min
Blog
「高速設計」と「低Dk PCBラミネート」の用語は、しばしば同じ記事で、そしてしばしば同じ文で使用されます。低Dk PCB材料は、高速および高周波PCBにおいてその場を持っていますが、高Dk PCB材料は電力の整合性を提供します。低Dk PCBは、一般に損失正接が低い傾向にあるため選ばれます。したがって、高Dk PCB材料は、高速および高周波PCBに対して見過ごされがちです。 高速/高周波ボードの電力の整合性を見るとき、単に信号損失を受け入れるか、高速ラミネートによって提供される値を受け入れるのではなく、安定した電力のための全体的な戦略の一部として誘電率定数を考慮すべきです。これには、PCBの電力の整合性に影響を与える誘電率定数の実部と虚部の両方が含まれます。これを念頭に置いて、電力の整合性を確保するために高Dk PCB材料が果たす役割を見てみましょう。 高Dk PCB材料とPCB電力の整合性 まず最初に、電力の整合性を見るとき、常にレギュレータ段階から出力される電圧が、PDN全体で電力が流れるにつれて一定であることを確保しようとしています。これには、PDN分析と電力の整合性の2つの側面が挙げられます: DC解析:ここでは、PDNを構成する 導体間のIR降下のみに関心があります。誘電率定数はDC解析では役割を果たしません。 AC解析:AC解析とは、電力平面上の任意の時間変動電流の振る舞いを意味します。これは、PDNのインピーダンスが重要となる場面であり、下流コンポーネントで見られる電圧変動は、 PDNインピーダンスと時間変動電圧(オームの法則)の積です。 電力面とグラウンド面の間の誘電体として使用される高Dk PCB材料は、重要な電力整合性の利点を提供します。特に、グラウンド面と電力面の間のPCB材料の高Dk値は、より大きな 面間キャパシタンスを提供し、これはあなたの平面がより大きなデカップリングキャパシタのように機能し、PDNインピーダンスが低くなることを意味します。グラウンド面と電力面を近づけることも面間キャパシタンスを増加させます。 2006年のIEEE論文からのいくつかの例示的なシミュレーション結果が以下に示されています。 誘電率定数のもう一つの重要な側面は、虚数部分またはDf値です。これは通常、損失正接を使用して要約されますが、これは高速/高周波ボードで特定の積層材の有用性を調べる際に使用する唯一の指標ではありません。
記事を読む
Altium Designerで完璧なPCBスタックアップを設計する方法
1 min
Blog
過去20年以上にわたり、電子機器は複雑になり続けてきました。基板の密度は限界に達しつつあります。EMC/EMI規制は進み、より厳格化しました。高速化できる余地は小さくなりました。このため、PCBレイアウト技術者が今日のPCBを確実に設計するには、EMC、PDN、EMI、SIを十分に理解することが必要です。この記事では、PCBスタックアップを正しく作成するための考慮事項についていくつか解説します。 解説する内容 このブログでは、PCBスタックアップをどのように計画し、基板設計CADのAltium Designerで実装するかについて解説します。HSD(High Speed Digital Design、高速デジタル設計)を行うときのSIの問題を最小化するための設計最適化について検討します。 学習内容 PCBの積層材料のデータシートを理解する方法 信号層の数を推定する方法 AltiumでPCBスタックアップを設計する方法についてのいくつかの推奨事項 一般的な誤りと落とし穴、およびAltiumを使用してそれらを回避する方法 PCBの積層材料データシートについて PCBレイアウト技術者が行う最初の手順は、applicationに使用するPCBの積層材料(樹脂、銅箔、ガラス繊維)を選択することです。選択するPCB積層は、applicationの種類により決定されます。 以下のデータを追加できます: HSD(High Speed Digital Circuit、高速デジタル回路)はサーバー、ルーター、高速データチャンネル(例: PCIe、10Gbeなど)で一般に使用されるもので、FR408HR、I-speedなどの積層が必要です。
記事を読む
平面容量のない4層PCBスタックアップの設計
1 min
Blog
一見すると、4層PCBの設計は簡単な作業のように思えるかもしれませんが、他のボードと同様に、適切なレイアウトとスタックアップが必要です。Kella Knackは、マルチレイヤースタックPCBを成功裏に設計する方法について専門家としてのアドバイスを提供しています。
記事を読む
PCB外層処理の概要
1 min
Thought Leadership
エキスパートのケラ・ナックがPCB外層の製造について詳しく説明しています。異なるビアがどのように形成されるか、多層構造プロセスにおけるステップについて読んで学びましょう。
記事を読む
パワープレーンとグラウンドプレーン:PCBのパワープレーンをリターンパスとして使用すべきですか?
1 min
Thought Leadership
電源プレーン(電源層とも呼ばれる)とグラウンドプレーンは、電力供給の配布以上の重要性を持っています。インピーダンス制御ルーティングでの基準プレーンの定義や、リターンパスの管理においても、スタックアップはリターン電流がPCBの電源プレーンに入り、その後グラウンド層に再結合されるよう強制することがあります。インピーダンス制御トレース幅の基礎としてGND基準層を定義しても、設計内の電源層の長さに沿った明確なリターンパスを定義する必要があります。電源層をリターンパスとして使用するPCB内でのリターンパスを制御するための良い実践をいくつか見てみましょう。 PCBの電源プレーンをリターンパスとする場合の信号挙動 「リターンパス」と言うとき、設計内でリターン電流が自然に従うパスのことを指します。このパスにより、電流はPCBアセンブリの入力側の低電位端子に戻ることができます。伝送線上で移動する信号にとって、リターンパスは線とその基準プレーンの間の容量によって決まります。容量が大きい、周波数が高い、またはその両方である場合、リターン電流は変位電流として容易にグラウンド層に入ることができます。 これは、伝送線とその参照平面との距離が、その参照平面のタイプが何であれ、実際の設計においていくつかの重要な電気的振る舞いを決定することを意味します。そのような振る舞いには、 外部ソースからのEMI感受性があり、これは大きな電流ループを介して誘導的に、または電場を介して静電容量的に受信されることがあります 不一致のインピーダンスは、平面領域間、ギャップを越えて、またはインターコネクトに沿ってトレース幅が変化する場合に生じます 他のトレースからのクロストークは、設計が 伝播中の損失は、伝送線と近くの参照平面または他の導体の間の場の線の集中によって発生します 返り経路または信号参照を提供する隣接層としてパワープレーンまたはグラウンドプレーンのどちらを使用するか選択できる場合は、常にPCBグラウンドプレーンを選択するべきです。これには2つの理由があり、以下で詳しく説明します。 静電容量結合 電力プレーンがどのようにして(あるいはしないで)任意の種類のリターンパスとして機能するかを議論する前に、我々は次の質問をしなければなりません。伝送線から電力プレーンPCBへの電流はどのようにして入るのでしょうか。答えは、容量性結合です!上述のように、リターンパスは伝送線と近くの導体の間で誘導されることが記されています。近くのプレーン層については、線とプレーンの間に電気ポテンシャルが変化するたびにこれが発生します。したがって、プレーンの隣でトレースが配線され、デジタル信号がそのトレースを通過するとき、我々は今、プレーン層で変位電流が駆動されていることになります。 近くのプレーンが、電力入力時の低ポテンシャル点と同じポテンシャルのグラウンドプレーンであれば、全てがうまくいくでしょう。これの問題点は、電流が電力プレーンから近くのグラウンド層へと移動する必要があるとき、電流は別の誘電体層を通ってPCBグラウンドプレーンに到達する必要があるということです。 スタックアップの設計方法や信号が誘導される基板の領域によって、2つの層の間のキャパシタンスは、電源プレーンとグラウンドプレーンの間に非常に高いインピーダンスの経路を形成する可能性があります。スタックアップによっては、以下に示すような単純な4層スタックアップの場合、電源層とPCBグラウンドプレーン層の間のプレーンキャパシタンスは非常に小さく(平方ミリメートルあたりフェムトファラドのオーダー)、非常に高速なデジタル信号や非常に高周波のRF信号を除いて、極めて高いインピーダンスのリターンパスを作り出します。この電源プレーンとグラウンドプレーンの間の旅の中での唯一の他の選択肢は、以下に示すように、最も近いデカップリングキャパシタを通ることです。どちらの場合でも、基板のどこかでEMI問題が発生する可能性があります。 通常の低速シングルエンド信号(たとえば、立ち上がり時間が制限されたI2CやSPI信号など)の場合、このGNDへの結合から発生するEMIが最大の問題ではないかもしれません。これは、純粋なDCや低周波アナログデバイスではまったく発生しません。しかし、今日の標準CMOSコンポーネントでは、一般的なデジタルコンポーネントのシングルエンドバスでもこの問題が発生する可能性があります。では、解決策は何でしょうか? 解決策は、PCBスタックアップの再設計にあります。最も簡単な方法は、グラウンドリターンを提供するレイヤーを追加することです。一般的に、すべてのGNDプレーンが適切に間隔を置いてステッチングビアで繋がれている限り、他の設計変更は必要ありません。設計の観点からより時間がかかるものとして、上記の4層スタックアップのように、PWRとシグナルを同じレイヤーに配置し、その上にPWRをプアとして同じレイヤーに追加することが挙げられます。 4層例 上記の例の4層ボードでは、連続したビットストリームを提供する必要があるバスとラインを、GNDの直上のトップレイヤーに配置するのが最適です。RCやシリーズ終端で遅延させることができる制御信号などの他の信号は、バックレイヤーに配置することができますし、その他のサポートコンポーネントも同様です。しかし、両方の表面レイヤーにデジタルバスを持つ4層PCBが必要な場合、最良の実践は代替スタックアップを使用することです。 このスタックアップは、ノイズを抑制し、どこでもクリアなリターンパスを提供する最良の代替手段と言えるでしょう。これはSIG+PWR/GND/GND/SIG+PWRスタックアップで、信号と電力は上層でルーティングされます。これにより、電力レールは隣接するGNDプレーンに近接して配置されるべきであるため、非常に強力なデカップリングが提供されます。 この代替4層スタックアップについてもっと学ぶ このボードには、複数の電力レールがある場合に生じる可能性のある難しさが一つあります。4層ボードが両層に高速信号を必要とし、複数の電力レールと強力な電力整合性が必要な場合、標準のSIG/GND/PWR/SIGスタックアップは機能しません。ここで、2層を追加して6層スタックアップを構築することが最良の選択です。
記事を読む
EMIを防ぐために、マルチレイヤーグラウンドリターンパスをたどりましょう
1 min
Thought Leadership
複雑な多層PCBでは、グラウンドへの戻り経路をたどることがすぐに複雑になります。PCBが少ない層数を持つ場合(例えば、2つのプレーン層を持つ4層ボード)、戻り経路を特定し、EMIを防ぐために意図的に設計することは比較的簡単です。しかし、層数が多い場合には状況がより複雑になります。複数のプレーン層と導体がグラウンド戻り経路を形成することがあり、その導体がグラウンドに接続されていない場合でもです。ここで、グラウンドプレーンと参照プレーンを区別することが役立ちます。なぜなら、両方ともPCB内の戻り経路の一部を形成することができるからです。 グラウンド戻り経路対参照プレーン 参照プレーンは、信号伝送経路の固有の部分です。それらがボード内に意図的に配置されているか(例えば、信号トレースのためのグラウンドプレーン)、または信号トレースに近接している意図しない参照プレーンであるかは、ボード全体の信号トレースの位置を慎重に追跡しない限り、判断が難しいかもしれません。信号のグラウンド戻り経路は、実際にはグラウンドを通過しないかもしれません。それはシャーシ、電源プレーン、または他の接地された導体を通過する可能性があります。 リターンパスが基板内のどこを通っても、常に基板上の低電位点、つまり電源に戻るグラウンドリターンポイントに戻ろうとします。リターン信号がシャーシ、電力平面、または他の導体に誘導された場合でも、グラウンド導体とより高い電位を持つ導体との間の電位差により、グラウンドに引き戻されます。 信号が伝播する際の リンギングの特性であるだけでなく、信号のリターンパスは以下の振る舞いを決定します: EMIの感受性。 リターンパスによって作られるループのインダクタンスは、回路の EMIへの感受性を決定します。大きな電流ループを持つ回路は、より大きな寄生インダクタンスを持ち、放射されたEMIに対してより感受性が高くなります。ループがタイトな場合、ループのインダクタンスは低くなります。これは、高速信号トレースを隣接層の基準平面に近づけて配線する理由の一つです。 混合信号基板における干渉。信号を運ぶ導体と最も近い基準導体との間の寄生容量、および回路によって作られるループは、スイッチング信号によって見られるリアクタンスを決定します。リアクタンスは信号の周波数成分の関数であるため、信号の戻り経路は中程度の周波数で予測しにくくなります。 このガイドを読んで、単一の平面層に対する混合信号の戻り経路を設計する方法についてもっと学びましょう。 コモンモードノイズ経路。一度特定のトレースに誘導されたコモンモードノイズは、信号がグラウンドに戻るのと同じ経路をたどろうとします。コモンモードノイズによってたどられる正確なグラウンド戻り経路は、信号によって見られるリアクタンスを決定するその周波数成分に依存します。 複数の平面層を持つ 多層スタックアップで配線している場合、状況はさらに複雑になります。信号経路に沿って基準導体が変わる可能性があります。初期の基準平面を決定する主要な量は、信号トレースと近くの導体との間の寄生容量と回路のインダクタンスです。寄生インピーダンスは、インダクタンスのおかげで隣接する導体に局所化されていないことに注意してください。これは、多層基板において複雑なグラウンド戻り経路を作り出す可能性があります。 これらのトレースのグラウンドリターンパスを追跡できますか? 確かなグラウンドリターンパスへの回帰 上記の内容を読んでまだ、 複雑なPCBでのリターン電流がどうなるのか疑問に思っているなら、電流がグラウンドプレーンや他の接地された導体に結合されるのはなぜか、そしてそもそもそれが起こる理由は何か、と自問自答しているかもしれません。これらはどちらも妥当な質問です。 隣接する導体間の寄生 まず二番目の質問に答えることで、最初の質問への答えを説明するのに役立ちます。リターンパスが導入される場所は、信号トレースと隣接する導体間の容量と、信号トレースと該当する導体によって形成される回路の自己インダクタンスに依存します。これらの量が合わさって、信号によって見られるインピーダンスを決定します。
記事を読む
Pagination
First page
« First
Previous page
‹‹
ページ
1
ページ
2
ページ
3
現在のページ
4
ページ
5
ページ
6
Next page
››
Last page
Last »