Skip to main content
Mobile menu
Discover
Develop
Agile
リソース&サポート
リソース&サポート
ラーニングハブ
サポートセンター
マニュアル
Webセミナー
Altium Community
フォーラム
バグの報告
アイディア
Search Open
Search
Search Close
サインイン
シグナルインテグリティ
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
ホーム
シグナルインテグリティ
シグナルインテグリティ
リソースライブラリを参照して、PCB設計とシグナルインテグリティの詳細をご覧ください。
What is Signal Integrity?
PCB Design Fundamentals
xSignals in Altium
Signal Integrity Stimulus Design Rules
Basics of Signal Integrity Analysis
Overview
All Content
Filter
見つかりました
Sort by
最新
人気順
タイトル(昇順)
タイトル(降順)
役割
電気技術者
PCB設計者
ソフトウェア
Altium Designer
Altium 365
Octopart
コンテンツタイプ
ビデオ
ポッドキャスト
ホワイトペーパー
TRANSLATE:
DDR5 vs. DDR6: RAMモジュールで何を期待するか
1 min
Blog
PCB設計者
電気技術者
エンジニアリングスペシャリスト
デザイナーがDDR5とDDR6 RAMで何を期待できるか?次のメモリデバイスに期待できることをここで紹介します。
記事を読む
PCB損失正接について: その意味と重要性について
1 min
Thought Leadership
あなたの積層板のPCB損失正接を知っていますか?この重要な要因と信号に与える影響についてもっと学びましょう。
記事を読む
S11パラメーターとリターンロスと反射係数: これらが同じになるときとは?
1 min
Blog
リターンロスと反射係数、S11パラメーターの違いは何ですか?この記事に答えが記載されています。
記事を読む
LVDSからLVPECL、CML、およびシングルエンド変換
1 min
Thought Leadership
PCBの高速インターフェースについては多くの話題があります。ここでは、LVDSからLVPECL、CML、その他のロジックファミリーへのインターフェースの方法について説明します。
記事を読む
伝送線路上の負荷容量が信号に与える影響
1 min
Blog
伝送線路や集積回路のデータシートについて読んだことがあるなら、負荷容量というどうやら神秘的な量について知ることがあります。この値は、伝送線路に接続されたコンポーネントリードの形状、基板材料、および集積回路ダイ上の基準平面までの距離に依存します。伝送線路を扱う際、コンポーネントの負荷容量は受信側で見られる信号の挙動に重要な影響を与え、PCB内で負荷容量をどのように影響させるかを理解することが重要です。 特定の負荷コンポーネントに対する伝送線路上の信号挙動を分析する必要がある場合、負荷容量はSパラメータや伝送線路の伝達関数に影響を与えるため、高速/高周波信号分析において考慮する必要があります。さらに、十分に高い周波数では、負荷における実際の入力インピーダンスは負荷容量によって決定されます。ここでは、負荷容量をよりよく理解し、PCB上の伝送線路で信号にどのように影響を与えるかを決定する方法について説明します。 負荷容量とは何か? 統合回路における負荷容量は、入力リードと最も近い基準平面の間の 寄生要素です。言い換えると、コンポーネントに接続された入力パッドと伝送線は、共通のグラウンド基準(伝送線とICが同じグラウンド平面を共有していると仮定)に対してシャント容量を見ることになります。 これは、伝送線に接続されたパッドが信号が受信機に到達するとある電圧になるが、PCB基板と統合回路ダイによってグラウンド平面から分離されているために発生します。この時点で ピンパッケージのインダクタンスは省略されていますが、これは伝送線とパッドの間に直列要素として位置します。パッド/グラウンド平面とリード/ダイグラウンド平面の寄生容量が並列になり、合計の負荷容量を与えます。これは以下の回路図に示されています: 上記の差動チャネルのケースでは、適用された終端は、差動信号を含む図を簡略化するために、単純な並列抵抗として示されています。しかし、差動受信機に適用される実際の終端回路は、 この記事で議論したように、より複雑であり、差動インピーダンスにマッチングするのではなく、チャネル内の個々の伝送線にマッチングしてオフセットを保持することを目的としています。 終端 上記の例では、固有のインピーダンス不一致に対処する自然な解決策は終端を適用することです。特性インピーダンスでのシャント終端を検討してください(IC内に統合されているか、外部抵抗器で適用されています)。低周波数では、負荷インピーダンスは終了インピーダンスとして現れます。しかし、高周波数では、負荷インピーダンスは負荷容量に完全によるものとして現れます。ここからの教訓は: 負荷容量のために、限定された帯域幅でのみインピーダンスマッチングが可能であるということです。 送信端容量 自然に思うかもしれませんが、伝送線のソース側の容量はどうなるのでしょうか?実際には、パッドの存在によりドライバーの出力インピーダンスを決定するソース容量があります。この信号は(ドライバー + 伝送線)システムから発信され、ドライバーの外側でのみ測定されるため、モデリング時には通常無視されます。したがって、信号がどのようにそこに到達したかについては基本的に心配する必要はなく、測定できることが重要です。心配する必要があるのは、(伝送線 + 負荷)システムの入力インピーダンスだけです。 負荷インピーダンスを持つ伝達関数 伝送線に入力された信号は、負荷容量によって影響を受けます。これは伝達関数で定量化されます。直感的に、上の図を見ると、容量は信号の高周波成分に対してグラウンドへのシャント要素のように作用します。したがって、実際のICに接続された伝送線は、信号が負荷に到達する前でさえ、ローパスフィルターのように機能します!
記事を読む
PCB分析向けABCDパラメーターの利点
1 min
Blog
SI(シグナルインテグリティー)エンジニアは常にSパラメーターのことをよく口にしますが、回路設計と分析用の代替ツールはABCDパラメーターです。
記事を読む
ABCDパラメーターとSパラメーターからの伝送線路の伝達関数
1 min
Blog
高周波数とデータ転送速度のチャンネルは、モード選択伝送線路として配線できます。この配線手法を検討する必要があるのは、次の場合です。
記事を読む
Pagination
First page
« First
Previous page
‹‹
ページ
9
現在のページ
10
ページ
11
ページ
12
ページ
13
ページ
14
Next page
››
Last page
Last »