SPICE: Certainty for All Decisions

Design, validate, and verify the most advanced schematics.

シグナルインテグリティ

Filter
Clear
Tags by Type
Popular Topics
Software
TRANSLATE:

銅箔の粗さが信号とインピーダンスに与える影響 TRANSLATE:

銅箔の粗さが信号とインピーダンスに与える影響
工学、特に電気工学と機械工学の歴史は、途中で役立たずになった近似値で溢れています。これらの近似値は一時期はうまく機能し、数十年にわたって技術を大きく前進させました。しかし、どんなモデルにも適用可能な限界があり、典型的なRLCG伝送線モデルや周波数非依存のインピーダンス方程式も例外ではありません。 では、これらの方程式の問題は何でしょうか?上級のPCBエンジニアや製造業者はこれらを頻繁に引用し、それらを福音のように見せかけますが、多くの複雑な技術概念と同様に、これらのモデルや方程式はしばしば十分な文脈なしで伝えられます。ここで物理学が醜い顔を出し、モデルが引き続き適用可能であるためには変更が必要だと告げます。 銅箔の粗さモデリングや関連する伝送線インピーダンスシミュレーションは、標準モデルが信号の振る舞いを正しく扱えない多くの領域のうちの一つです。 銅箔の粗さがインピーダンスと損失にどのように影響するか 伝送線インピーダンスのRLGCモデルを見ると、インピーダンスに寄与する4つのパラメータがあります(すべて標準単位/単位長さで表されます): R:伝送線の直流抵抗で、線の導電率に依存します。 L:伝送線のループインダクタンスで、純粋に線の幾何学的形状の関数として取られます。 C:線の全容量で、これも線の幾何学的形状の関数として取られます。 G:基板の導電率で、特定の周波数での損失角と任意の寄生直流導電率をモデル化することを意味します。 業界の多くの人があなたに教えてくれないことがあります:これらのパラメーターはすべて周波数依存であり、抵抗項を含みます!「ちょっと待って、EE101のクラスでみんなが抵抗は周波数に依存しないと言っていたけど、どういうこと?」と思っているかもしれません。 2014年にさかのぼると思いますが、 IEEE P802.3bj タスクフォースが初めて100 Gb/s Ethernet PHYインターコネクトの因果モデルを受け入れる提案を提示されました。このモデルでは、上記のインダクタンス、容量、抵抗の項が周波数依存性を含むように修正されました。基板の分散を考慮することで容量項は容易に修正されました。では、抵抗とインダクタンスはどうでしょうか?高周波での導体内のスキン効果により、周波数による抵抗の依存性が生じます。 スキン効果は、電流が高周波で振動するときに、導体の表面近くに電流が集中する現象を指します。完全に滑らかな導体では、スキン効果はGHz周波数に達するまでごくわずかです。しかし、銅の粗さが存在する場合、特定の周波数範囲内で損失がかなり大きくなることがあります。スキン効果は線路のインダクタンスも増加させます。全体的な効果は、標準のRLGCモデルで予測される値から線路インピーダンスの変更です。 基板の分散を考慮しない場合でも、 等価回路項の分散は常に理想的なインピーダンスからの逸脱を引き起こします。マイクロ波やミリ波領域に深く入ると、インターコネクトを設計する際に銅の粗さを考慮する必要があります。
PCBテストクーポンの設計方法とテストできる内容 Thought Leadership PCBテストクーポンの設計方法とテストできる内容 コンポーネントの動作速度が上がるにつれて、デジタル、アナログ、混合信号システムにおいて制御インピーダンスが一般的になってきています。インターコネクトの制御インピーダンス値が正しくない場合、インサーキットテスト中にこの問題を特定するのが非常に難しくなります。わずかな不一致がボードの故障を引き起こさない場合がありますが、テスト失敗の原因として不正確なインピーダンスを特定するのは難しい場合があります。特に、ベアボードインピーダンステストを容易にするために、正しいテストポイントやテスト構造がボードに配置されていない場合はそうです。 インピーダンスは多くのパラメータ(トレースの形状、ラミネートの厚さ、ラミネートのDk値)に依存するため、現在のところ、大多数のPCBは制御インピーダンスのためにテストされています。ただし、テストは通常、PCBと同じパネル上で製造されたPCBテストクーポンで実施されます(通常は端に沿って)。ボードスピンを迅速に進め、将来の設計を支援したい場合は、テストクーポンを設計して手元に置いておくことを検討すると良いでしょう。さらに、提案するインターコネクトのジオメトリに関する十分なドキュメントを製造業者に提供することは、製造業者が正しいテストクーポンを作成することを確実にするのに大いに役立ちます。 分離型または統合型PCBテストクーポン? テストクーポンの目標は、ボードの意図されたスタックアップを正確に捉え、正確なインターコネクトインピーダンステストを容易にすることです。これを行う方法はいくつかあります。制御インピーダンス用のテストクーポンでは、製造業者がパネルの端に少しスペースを残して、制御インピーダンステストのためのテスト構造を配置することがあります。テストクーポンは、ベンダーライブラリから選択されたり、業界標準(例えば、 IPC 2221B Appendix AのDクーポン)、またはいくつかのソフトウェアを使用して生成されたりすることもあります(例えば、 IPC 2221B Gerber Coupon Generator)。 時には、テストクーポンが実際のPCBに統合され、同じパネル上で別のセクションとして作成されるのではなく、実際のPCBに統合されることがあります。この場合、テストクーポンは、生成されたものやベンダー提供のテストクーポンから期待される典型的な外観を持たないかもしれません。Kella Knackは、 最近の記事で、製造業者であれば別のテストクーポンに、設計者であればプロトタイプボードに直接含めるべき一般的なテスト構造について説明しています。 テスト構造を直接ボード上に配置することは、スペースの無駄のように思えるかもしれませんが、プロトタイピング中はもちろん、大規模生産中でも、インサーキットテストに大いに役立ちます。もし、一般的でないインターコネクトの幾何学構造を設計している場合、大量生産前にインピーダンスを評価する必要があります。インターコネクト設計を含む単一のボードを設計し、社内でテストすることは損ではありません。テストボードに前もって費用がかかりますが、生産前に必要な測定値を得られれば、後でボードを再設計する必要がなくなるかもしれません。 インピーダンスを超えて 相互接続インピーダンス、PDN容量、導体損失、伝搬遅延は、適切なテスト構造を用いればすべて測定できます。カスタム設計されたテストクーポンに配置された他のテスト構造は、基板ラミネートの 誘電率を決定するのに役立ちます。マイクロ波/ミリ波領域に達すると、挿入損失や空洞放射などがテストされるべきで、制御インピーダンス線上のアナログ信号が重大な劣化を経験しないようにする必要があります。
これらのアンプは動作中に安定していますか?PCB内のアンプの安定性について知っておくべきことがここにあります。 Thought Leadership 高周波数と漂遊容量におけるアンプの安定性 アンプは、現代生活を可能にする重要なコンポーネントの一つです。無線通信からパワーエレクトロニクスまで、これらの製品が適切に機能するためには、アンプが安定して予測可能に動作する必要があります。安定性分析は、物理学と工学の中で私のお気に入りのトピックの一つであり、予想外の場所でよく出くわします。その一つがアンプです。 フィードバックとゲインを持つ時間依存の物理システムは、システムが安定した振る舞いに達する条件を持っています。アンプの安定性は、これらの概念をアンプに拡張し、意図しないフィードバックによってシステム出力が望ましくない飽和状態に成長する可能性がある場所です。適切な設計とシミュレーションツールを使用すれば、レイアウトを作成する前に回路モデルの潜在的な不安定性を簡単に考慮に入れることができます。 RFアンプの安定性に及ぼす漂遊容量の影響 アンプ回路の不安定性の源泉、およびアンプICの入出力ポート間は、寄生容量です。この寄生容量は、アンプに接続されるトレース間に存在します。寄生容量は、長いトレース(すなわち、伝送線)のインピーダンスを特定の値に設定するために重要です。しかし、寄生容量はまた、出力ポートと入力ポート間の意図しないフィードバックの経路を提供します。 このフィードバックパスは容量性であるため、入出力信号の周波数が高いほどそのインピーダンスは低くなります。現在、これは通常チップレベルで対処されていますが、より多くのRFアンプがますます高い周波数で動作するにつれて、PCBのトレースやパッドからの寄与がより重要になってきます。わずか数pFの寄生容量でも、運用中にアンプを不安定にするのに十分です。 ボードレベルでは、入力の漂遊容量が帯域幅を制限する効果を持ち、帯域幅は因子(1 + ゲイン)によって減少します。解決策は、アンプのポートでトレースとパッドを設計して寄生容量を最小限にするか、フィードバックループに補償容量を追加することです。高GHz帯域(例えば、mmWave周波数)では、コンポーネント間の間隔は臨界長よりも大きいため、 インピーダンス制御ルーティングを使用する必要があります。SoCへの一部のコンポーネントの統合は、この問題を解消するのに役立っていますが、今後のデバイス用の多くのRFアンプは依然として個別のコンポーネントとしてパッケージされています。典型的な例は、mmWaveアプリケーション用の新しいパワーアンプです。 アンプの安定性を評価する典型的な方法は、メーカーの評価ボードを使用して、直接、任意の過渡的な挙動を測定することです。もう一つの選択肢は、アンプに接続された入力および出力トレース上の寄生容量を決定し、これらをシミュレーションに含めることです。これらのシミュレーションでは、寄生容量を打ち消すために、アンプのフィードバックループに補償用のキャパシタを実験的に追加することもできます。 シミュレーションでの漂遊容量の考慮方法 あなたの回路図は、完璧な回路の2D描画に過ぎません。システム内のどこにも漂遊容量要素を含んでおらず、PCBの実際の挙動を正確に反映していません。とはいえ、適切な設計ツールを使用すれば、PCBに寄生を簡単に含めることができます。受動部品の 自己共振をシミュレートしようとしているのか、またはシステムの他の部分の漂遊容量をシミュレートしたいのかにかかわらず、戦略的な場所に回路図にキャパシタを追加する必要があります。 アンプの入力における漂遊容量をシミュレートするには、適切なサイズのキャパシタとACソースをアンプの入力に追加するだけです。キャパシタはシャント要素として配置されます(つまり、共通のグラウンド接続に接続されます)アンプの入力ポートと出力ポートに。また、アンプコンポーネントの検証済みコンポーネントモデルを使用して、寄生容量の存在下でのアンプの動作を把握する必要があります。シャント容量要素は、基板内のグラウンドと入出力トレース間の結合をモデル化します。 その後、2種類のシミュレーションを実行できます: 過渡解析および 極-零点解析。 過渡解析の予想結果 過渡解析では、アンプが動作するにつれて信号が不安定になり、時間とともに飽和に達するかどうかを確認できます。以下のグラフは、大きな寄生容量による強い不安定性を持つ100 GHz信号の例示結果を示しています。ここでは、意図しない強いフィードバックと高入力信号レベルにより、出力の過渡電圧が2Vの飽和値に達しています。
伝送線路インピーダンス:6つの重要な値 伝送線路インピーダンス:重要な6つの値 様々な伝送線路のインピーダンス値を見ていくと、特性インピーダンスと差動インピーダンスが重要な値として際立っています。これらは通常、信号規格で指定されているからです。しかし、PCB設計において重要な伝送線路のインピーダンス値は実際には6つあります。テキストブックや技術記事によっては7つある場合もあります。 特性インピーダンスの方程式は、多くの記事や教科書で簡単に見つけることができますが、他の一般的な伝送線路のインピーダンス値を計算するのはより困難です。この困難さは、複数の伝送線路の配置とそれらの間の結合の強さに依存しているためです。他の典型的なインピーダンス値は、線路の長さと任意のインピーダンスの不一致に依存する入力インピーダンスです。 伝送線路インピーダンス値 PCB設計およびルーティングの一環として理解する重要な伝送線路インピーダンス値をここに示します。 特性インピーダンス 「伝送線路インピーダンス」という用語をGoogleで検索すると、特性インピーダンスの定義が検索結果の最初のページで最も見られる結果となるでしょう。ほとんどの設計者は、集中回路モデル内で定義されている特性インピーダンスについてはおそらく馴染みがあるでしょう。このモデルは、特性インピーダンスに関して以下の人気のある式を返します: 十分に高い周波数または十分に低い損失の場合、特性インピーダンスは純粋に抵抗的になり、以下の値に収束します: 高周波限界における伝送線の特性インピーダンス。 ここでは、デジタル信号の帯域幅で約1GHzまで適用される スキン効果は無視されています。伝搬遅延と特性インピーダンスからLとCの値を標準式を使用して導出できます。 異なるトレース形状に対してです。その後、これらの回路値を使用して トレース幅とインダクタンスを最適化し、過渡的なリンギングを最小限に抑えることができます。 特性インピーダンスは時々「サージインピーダンス」と呼ばれ、用語「サージインピーダンスローディング」と関連しています。この用語は、伝送線を介して伝達され、負荷で見られる電力を定量化するために電力システムエンジニアによってよく使用されます。 偶モードと奇モードのインピーダンス 二つの伝送線が十分に近接している場合、容量性および誘導性の結合を経験します。この結合は通常、クロストークを決定するものですが、各線上の信号によって見られるインピーダンスも変更します。結合された線が共通モード(同じ大きさ、同じ極性)で駆動される場合、偶数モードインピーダンスは、ペアの一方の伝送線上で移動する信号によって見られるインピーダンスです。線が差動モード(同じ大きさ、同じ極性)で駆動される場合にも同様の定義が適用されます: 偶数および奇数モード伝送線インピーダンス値は、結合された伝送線のペアに対するZパラメーターの観点から定義されます: Z行列(インピーダンスパラメーターとも呼ばれます)は、Sパラメーターに簡単に変換できます。共通モードまたは差動駆動を持つ複数の結合伝送線に一般化することもできます。 このPDFをご覧ください、Zパラメーターや特性インピーダンス値をSパラメーターに変換するために必要な方程式について。 共通モードと差動インピーダンス 共通モードと差動モードのインピーダンス値は、偶数モードと奇数モードのインピーダンス値と関連しています。差動インピーダンス値は通常、奇数モードインピーダンスではなく、