Skip to main content
Mobile menu
PCB設計
Altium Designer
世界中の設計者に支持される回路・基板設計ソフトウェア
CircuitStudio
エントリーレベルでプロ仕様のPCB設計ツール
CircuitMaker
個人、オープンソース、非営利団体のための無料PCB設計ツール
Altiumに乗り換える理由
他のPCB設計ツールからAltiumに乗り換える理由と方法を確認する
ソリューション
Altium Enterprise ソリューション
デジタルトランスフォメーションへの 最終ステップ
電子部品プラットフォーム
世界中の技術者が利用するOctopart
Altium 365
リソース&サポート
製品情報
無償評価版
ダウンロード
拡張機能
リソース&サポート
Renesas / Altium CEO Letter To Customers
全てのリソース
サポートセンター
マニュアル
Webセミナー
コミュニティ
フォーラム
バグの報告
アイディア
教育
専門家育成トレーニング 資格取得プログラム
Comprehensive Career Training for Altium Software and Design Tools
大学・高専
Academic Licenses, Training, Sponsorships and Certificates for Higher Education
オンラインストア
Search Open
Search
Search Close
サインイン
高速設計
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
無料トライアル
高速PCB設計
高速設計の課題に対処するための簡単なソリューション
ソリューションを探す
高速PCB設計
Highlights
All Content
Filter
Clear
Tags by Type
全て
ビデオ
ホワイトペーパー
Popular Topics
全て
高密度配線(HDI)設計
高速設計
シグナルインテグリティ
PCB配線
回路設計
Software
全て
Altium Designer
Thought Leadership
基板をESDから保護するための正しいPCB配線とPCBレイアウト
私がランニングを始めた頃、既に何回かウルトラマラソンを完走した友人と一緒に走っていました。彼女は家から何マイルも遠くまで走り、私と一緒に短いループを走ってから、私と離れてさらに走り続けました。私が速くなると、彼女は早く家に帰る代わりに、ループを長くしました。彼女はこれに関して巧妙でもありました。彼女は常に、私が早く引き返すと退屈なルート、または私が知らない新しいルートで、近道をできないように計画していました。 彼女は都市計画家として、ランニングのルートも意図的に好きなルートを選択していました。私は技術者として、まったく異なるもの、通常は走りやすい場所を望んでいましたが、彼女の意図も理解していました。結局のところ、私がPCBを設計するときも同じことが成り立ちます。私はコストや性能に関して特定の目標を達成するような配線を希望します。配線は ESD保護 においては特に重要で、ESDで引き起こされるEMIからコンポーネントを安全に保護するため役立ちます。 回路のループの最小化 私たちのランニングのルートは多くの場合に回り道のループでしたが、PCBにおいてはその逆を行うべきです。回路のループを最小限にすれば、ESDがPCB上で伝搬されることによる損傷を大幅に低減できます。これは、変動する磁束を囲むループには誘導電流が発生するためです。この磁束がESDによるものであれば、誘導される電流が予期せずコンポーネントへ流れ込むことにより、極めて破壊的な損傷が発生する恐れがあります。 場合によっては他の選択肢がなく、レイアウトにどうしてもループが必要な場合もあります。このような場合、ループの面積を最小限にします。誘導電流の大きさは、ループのサイズに比例します。 GNDプレーンの使用 多層基板を設計するときは、必ず GNDプレーン を使用すべきです。PCB上に形成される最も一般的なループは、電源からGNDへの配線です。これらのループは非常に遍在的なため、見逃されがちです。 GNDプレーンを実装できない設計者は、ビアのグリッドパターン(格子状パターン)を使用して電源とGNDとを接続します。これは基本的に配線のあるGNDプレーンをエミュレートするものです。これは格子と考えることができ、1つの線に沿ったいくつかのポイントで電源の接続が発生し、GNDの配線が直交した線に沿って接続されます。 Semtech は非常に適切な例を用意しており、同社は6cmごとに接続を行うことを推奨しています。 同社は、電源とGNDとの配線を近くに保持することも推奨しています。ただし、これによって基板に、特にAC電源との間にエッチングが発生する可能性もあります。 グリッドパターンを使用して、電源とGNDとを接続すると、GNDプレーンを使用できないときに回路ループを最小化するために役立ちます。 配線経路の最適化 ループを最小化する以外に、互いに並列している配線を除去するよう心がけてください。これは、相互接続されているデバイス間の並列配線について特に重要です。並列した配線は互いに簡単に 結合 します。
Thought Leadership
自動車レーダーや5G用途の高周波回路向けPCB設計ガイドライン
今朝、通りを歩いていて、非常に奇妙な光景を見ました。長くもつれた磁気VHSテープが、風に運ばれ、道を転がっていたのです。私は、ビデオレンタル店や巻き戻し機といった素朴な時代に連れ戻されました。もし、あの巻き戻し機を速いと思っていたならば、今日の電子回路の大躍進には、目が回るでしょう。基板設計における最新の進化の1つは、5Gネットワークおよび先進運転支援システム(ADAS)対応自動車という、2つの新しいテクノロジーによって促されています。これらのテクノロジーは両方とも、基板設計者によって長い間、恐れられてきた、極高周波(EHF)帯域を使用します。自分の基板が、ベータマックスや大型ラジカセと同じ運命をたどらないよう、高周波の未来に備えるのがよいでしょう。 これとお別れできてよかった ミリ波を使用する理由 RFやマイクロ波の周波数が十分でないからといって、EHF帯域に移ろうとしているのは、なぜでしょう? 5GとADASレーダーという2つの進歩が、より高い周波数への移行を迫っているからです。 5G - 電気通信企業は、今日の4G/LTEの速度や待ち時間から、より速く明るい未来の5Gへと移行しようとしています。現在の移動体通信ネットワークでは、ダウンロード速度は、 数十メガビット/秒、待ち時間は 約70ミリ秒>です。5Gでは大きく飛躍し、 ダウンロードは最大10Gbps、待ち時間は10ミリ秒未満になります。この全てが可能なのは、5GがEHF帯域で動作するからです。周波数帯域幅が広いほど、待ち時間は短く、周波数が高いほど、データ転送速度は速くなります。業界では、5Gの実装開始を2018年頃と予想しています。その時には、ミリメートル(mm)波長信号を扱う準備ができている必要があります。 ADASレーダー - ADAS対応車向けレーダーは、開発済みの技術です。衝突検出レーダーは、30GHz未満で動作していましたが、最近、規格が 77GHzまで上がりました。メーカーが製造する ADAS機能付き自動車が増える>につれて、通りを 走るレーダーシステムが増えると予想できます。何らかの種類の自動車レーダーを扱う基板を設計したい場合、EHF信号を扱う準備をしておくべきです。 これらの技術が両方とも成長するにつれて、その動作周波数を扱う方法について、ますます知る必要ができてきます。急速に変わる基板設計環境に対処するため、ここでは、材料と設計のガイドラインを示します。 材料のガイドライン 実は、高周波基板に使用する
Thought Leadership
高速設計プロセスを自動化する方法
ネットの個々のセグメント長、ビアの深さ、またはピンの長さをスプレッドシートで追跡するのは、負担になることがあります。Altium Designer
®
の新技術を使って、高速設計プロセスを自動化する方法を学びましょう。 高速設計は、電気エンジニアが取り組むことができる最も難しい課題の一つです。高速信号がどのように反応するかに影響を与える要因は数多くあります。一般的な誤解は、高速設計はシステムクロック周波数の機能であるということです。これは事実ではありません。むしろ、高速は立ち上がり時間、PCBスタックアップによるインピーダンス制御、トレース幅、および終端によって決定されます。 高速スイッチングは、エンジニアとPCB設計者にとって本質的に2つのことを意味します: 信号整合性の問題 反射、クロストークなど 信号整合性の目標は、制御されたインピーダンスのルーティング、終端、およびPCBスタックアップを通じて達成されます。 タイミング制約 複数の信号がほぼ同時に目的のピンに到達することを保証します 信号経路のルート長を一致させます 高速設計の古い方法 過去、エンジニアは信号整合性とタイムコンストレイントの問題に対処するために、すべてをスプレッドシートで追跡する必要がありました。これにより、ネットごとの各個別セグメント長、ビアの深さ、抵抗器の長さ、ピンの長さを追跡することができました。それぞれのネットについてすべてを合計し、必要に応じて信号長を追加した後、グループ内のすべてのネットの長さを均等にすることができました。これは、煩雑で時間がかかる古い方法の長さ合わせです。 スプレッドシートでデータを追跡する時間を無駄にせずに、長さや長さの一致などの関連する設計ルールを自動的にスコープできたらどうでしょうか? 無料の高速設計とxSignals
®
ホワイトペーパーをダウンロードして、高速設計プロセスを自動化する方法を学びましょう。
Whitepapers
ボードのエリアセンシティブ部分
プロジェクトのその段階に差し掛かっています。開発リリースされた製品を生産に引き渡す時です。開発の観点からすると、設計、部品、モデル、BOM、文書など、すべてがリリース状態にあります。設計を期限内、予算内で完成させるために数週間徹夜を重ねた後の、真のお祝いの時です。そして、いくつかの「もしも」の質問でフラッシュバックが起こります。調達は正しいフットプリントで新しい部品を入手したのか?実際に生産に引き渡されるのは設計の最新バージョンか?最近の設計レビュー後にBOMは更新されたか?オフサイトの機械チームが最後の瞬間に必要なエンクロージャーの調整を行ったことを確認したか?そして突然、達成と喜びの瞬間が、最後の手段を念頭に置いた不確かな瞬間に変わってしまうかもしれません。指を交差させるしかない! 開発後ストレス障害 この開発後の段階の懸念は、技術業界の多くの企業にとって非常に一般的であり、それには理由があります。多くの企業が依然としてECADデータ資産を不十分に管理しているため、手動でエラーが発生しやすいシステムがしばしば物事を見逃す原因となっています。ECADデータ管理のこれらの亀裂は、プロセスのさまざまな段階から生じる可能性があり、いくつかを強調すると: ECAD設計の手動スポットチェック 手動での署名の収集 CAD環境外での追加の手動ステップをエンジニアに強いることで、リビジョンのプッシュを忘れる 手動のカスタムデータ管理プロセス(BOM、モデル、フットプリント、部品番号) 手動のリリースおよび変更プロセス すべてのタイプのユーザーへの無制御アクセス この制御されていないECADデータ管理プロセスは、これらの企業の利益に深刻な影響を与えています。すべての顧客は、より複雑な電子機器でのみ満たすことができる、機能と機能に富んだソリューションを求めています。製品開発の複雑さがエスカレートする中、提供する製品を差別化する市場圧力と、ナビゲートする規制の制約とともに、技術企業は、急速に成長する複雑な製品データを管理するソリューションを見つけるために莫大な圧力にさらされています。 新しい高度な電子製品の複雑さは、ECADデータそのものにとどまらず、ほとんどの開発環境が複数の専門分野(機械、ソフトウェアなど)を含むため、データ管理を指数関数的に難しくしています。さらに、これらの開発チームはしばしば異なる時間帯や地理的な場所に分散しており、おそらく異なるツールやアプリケーションを使用しています。これらの複雑さの追加層は、データ管理全体を統一できる堅牢な統合がなければ、手動のデータ管理システムの亀裂をさらに広げ、エラーが発生しやすくなるだけです。 PCB開発の痛点 よく言われるように、予防は治療よりも良いものです。開発後のストレス障害の痛みを修正するための最初のステップは、それにつながる可能性のある原因を知ることです。PCB開発においてどの要素が役割を果たし、それらが互いにどのように影響を与えるかの全体像を見ることができるときにのみ、治療法がどのようなものであるべきかを理解できます。 ECADデータはどこに保存されていますか 実際には、多くの企業がまだネットワークドライブにECADデータを保存することに依存しています。Dropboxのようなサービスがうまくいっているのは、消費者自身がもはや写真やファイルをローカルドライブに保存していないからです!では、この90年代のスキームでは何が問題になるのでしょうか?実際、ネットワークドライブにECADデータを保存することは、ビジネスが効率改善を実現することを妨げる原因の1つであることがわかりました。そして、ここにいくつかの問題点を挙げます: アクセス制限:VPNのようなサービスを使用してネットワーク外からドライブにアクセスする方法がありますが、ECADがネットワーク内に保存されている限り、常にローカルチームに限定されます。オフサイトのチームやパートナーは運が悪いかもしれません。また、ECADデータが削除または変更されないように役割ベースのアクセスを強制することも困難です データ管理の劣悪さ:このスキームでは、ECADのライフサイクルとリビジョンを効率的かつ実用的に管理する方法が単純にありません。このシナリオはしばしば多くのデータの重複、ドキュメントのコンプライアンスの欠如、および既存のECADデータの非常に貧弱な活用をもたらします 異なる複雑なデータ:このように保存された場合、ECADデータを理解することが困難になります。多くの時間を無駄にすることなく、調達情報をECADファイルに関連付けるなど、異なるタイプのデータを互いに関連付けることは不可能です。ネットワークドライブは単純に複雑なデータ構造を理解しません ライフサイクルサポートなし:ECADがライフサイクルのリビジョンを変更する場合、誰もそれを知らず、これはしばしば間違ったリビジョン、設計、部品、またはBOMが生産または他のステークホルダーに押し出される原因となります この劣悪なECADデータストレージ管理の実践は、設計チームがデータ駆動型の決定を下すのを助けません。なぜなら、彼らはPCBライブラリのパラメトリックデータガバナンスなどの必要な情報をマッピングし、アクセスすることができないからです。これにより、BOMが設計ファイル自体と同期しなくなります。
Whitepapers
レイヤースタックを間違えないようにする方法
はじめに PCBの製造工程で最も犯しやすい間違いの1つは、層の順序の誤りです。確認しないままにしておくと、全工程が無駄になる場合があります。PCB実装工程を経た製品は、電気的導通の観点からは機能するかもしれません。電気的に導通していれば、電気的検査にも合格するかもしれません。しかし、プレーンや信号層の順序と層間の距離を最優先にしている設計では、最終的な実装段階で障害が発生します。 正しい順序で積層し、後工程外観検査を行うために必要な情報を製造業者に確実に伝えるには、そうした情報を銅パターンとして直接設計に組み込んでおく必要があります。これらの銅パターンを設計に含めるのはPCB設計者の責任です。 製造データ内に適切な銅パターンを設計しておけば、積層順序を間違える心配はほとんどなくなります。さらに、社内で品質保証検査を実施し、 工場への投入が可能になった後、これらの銅パターンを使って最終実装検査を行うことができます。 層の識別 各層の銅箔にまず追加するパターンは、その層が全体の中で何番目かを示すためのものです。各層に層番号を割り当てます。層番号は銅箔に直接エッチングされ、レイヤースタックアップ内での位置を示します。層番号を基板外形の外に配置しても、アートワークプロットがどの層を表しているかを示すのには不十分です。層番号は、完成基板の領域内に含まれている必要があります。 製造業者によっては、2次側層の層番号をミラー反転しておく必要があります。層番号は、回路の電気的特性に悪影響を与えないように基板の端の近くに配置する必要があります。層番号は、各層上に数字を1つ配置することで表すことができます。 しかし、それらの数字は上に積み重ねることはできません。全層のチェック用プロット図を重ねて上から見たとき、数字が全てはっきり見える必要があります。 識別しやすいように、多くの場合、層番号は長方形の箱の中に配置します。アセンブリの裏側に置いた検査光源で、完成PCBを透かして層番号が簡単に見えるように、はんだマスクとシルクスクリーンのパターンを層番号の周囲の領域から除去する必要があります。層番号は、層が全て存在することを示す印になります。また、アートワークプロット図が表す層を製造業者に示す印にもなります。(※続きはPDFをダウンロードしてください) 今すぐ Altium Designerの無償評価版をリクエストして、世界最高のPCB設計ソリューションをお試しください!
Pagination
First page
« First
Previous page
‹‹
ページ
12
ページ
13
ページ
14
ページ
15
ページ
16
現在のページ
17