PCB Design and Layout

Create high-quality PCB designs with robust layout tools that ensure signal integrity, manufacturability, and compliance with industry standards.

Filter
見つかりました
Sort by
役割
ソフトウェア
コンテンツタイプ
適用
フィルターをクリア
EMC認証と製品 EMC認証と製品 1 min Blog 私は、エレクトロニクス分野での自分のキャリアのほとんどを、中小企業やスタートアップ企業と協力することに費やし、彼らがアイデアを物理的な製品の形にするのを支援してきました。ほぼすべてのクライアントが抱えており、私が何度も見てきた誤解は、電磁両立性コンプライアンスに関するものでした。多くの企業は、自社製品にEMCテストが必要であることを知りませんでした。また、認証にかかる期間と費用や、要件が自社の製品にどう適用されるかを把握していない企業もありました。 認証について知っていた人でも、自社製品にWi-Fi、Bluetooth、その他のRFトランスミッターやトランシーバーが搭載されていないため「RFテスト」を受ける必要はないと、その多くが誤って信じていました。また、数十あるいは数百の基板だけを製造する企業であるから、認証を受ける必要はない、または認証を受けなくても問題ないと考える人もいました。中でも驚きだったのは、市販の電子基板(Arduinoやブレークアウト基板など)を使用し、それらをすべて筐体に配線するだけの企業なので、デバイスを認証する必要がないと考える人がいたことです。 ほぼすべての国には、独自のEMC規制と認証要件があります。国境を接している国同士や、ある国の認証/規制当局が規制の策定を主導している場合は、各国の規制が類似する可能性があります。例えば、カナダと米国には非常に似た要件があり、またヨーロッパのほとんどの国では、CE規格への準拠のみが要求されます。製品を販売する地域ごとにデバイスを認証する必要がある場合に比べ、共通の要件を定めることで認証プロセスが簡素化され、コスト効率が高くなります。また国によっては、自国内のラボで規制に照らして製品をテストすることを義務付けている国もあります。その場合、テスト用のデバイスを複数のラボに送る必要があるため、認証取得の費用と時間が大幅に増加する可能性があります。 この記事では、特に非意図的な放射機器、つまり意図的なRF放射のないデバイスに焦点を当てています。何らかの放射を発生させることなく、電子回路を構築するのは不可能です。導体に可変電流が流れる際には常に磁場が発生し、電磁エネルギーが放射されるからです。これらの放射が、指定された制限値を確実に下回るようにすることで、他のデバイスや無線信号に干渉しないようにするために、規制や指令が存在しています。 コンプライアンスが重要な理由 EMC規制がなければ、不適切に設計されたデバイスによって無線通信が不可能になる環境が生じ、接続されている他のデバイスや付近のデバイスの機能を、損傷または破壊する可能性があります。こうした規制がなければ、携帯電話、無線による航空管制、Wi-Fiによるインターネット接続、衛星通信など、 電磁波を利用したあらゆる種類のテクノロジーが利用できなくなる可能性があります。 極端な例を挙げていると思われるかもしれませんが、未認証のデバイスが無料放送のテレビ信号を妨害し、そのデバイスと同じ建物内で一部のチャンネルの信号品質が低下して視聴できなくなったり、付近のCBラジオが機能しなくなったこともあります。極端な例ですが、Makerのイベントでは、テストを一切受けていない高周波・高アンペアのモーターを備えたロボットのせいで、ペースメーカーを装着した年配の男性が困難な状況に陥り、ロボットの電源を切ることになったのを目にしました。 こうしたことが、企業とその製品にどう関係するのでしょうか?産業施設に設置する単一のユニットを作成している場合はどうすればよいでしょうか?Tindieで販売するブレークアウト基板を作成している場合は? 欧州委員会の電磁両立性指令のウェブサイトを引用すると、「機器(装置および固定設備)は、市場に投入され、および/または使用される際に、EMC要件に準拠する必要がある」とされています。 1台のデバイスを1回限りの使用のために販売する場合でも、100万台のデバイスを製造して流通させる場合でも、機器の認証を受けることが法的に義務付けられています。この要件は、PCBを作成するのではなく、複数の既製の基板を1つの筐体に組み立てる場合にも適用されます。同様の要件は、米国(FCC認証)、カナダ(ISED規制)、およびその他のあらゆる国で適用されています。 EMIおよびEMCに関する業界標準と規制の詳細については、こちらをご覧ください。 規制に関して、何もせずに切り抜けられると考える人はいるかもしれません。しかし、私が過去に仕事をした小規模のクライアントは、過去に製品のコンプライアンス文書の欠如を摘発されていました。そのうちの1つは、年間の販売数がわずか数百台という米国の個人事業主で、注文品をヨーロッパの代理店に発送していましたが、仕向国の税関が、CE書類が提示されるまで発送を保留したのです。 別の企業は、意図的な放射機器(RF製品)を販売しており、この取扱量も少量でしたが、未承認の製品を販売したとしてFCCから数十万ドルの罰金を課されました。販売量が少なくても、製品が規制当局の目に留まった場合、逃れることはできません。 製品の認証を受けることは、コンプライアンス違反によって製品が破棄されたり、罰金を科されたりするよりも、はるかに安上がりなのは確かです。 製品の認証を受ける方法 最終的には、認証を希望する規制機関が承認または認可したラボに、自社製品を送付する必要があります。しかし、必要なサービスを提供するラボを予算内で見つけるのは困難な場合があります。スケジュールが許すなら、エレクトロニクスの展示会に足を運んでみるのも一案です。さまざまなラボのエンジニアと話す機会が得られるため、たとえ遠方でも、そのために出張する価値があるはずです。また、電子機器の製造/組み立てのビジネスに焦点を当てた比較的小規模な展示会では、複数のラボから代表者らが参加している可能性があります。 最も安い見積もりを提示した会社が、必ずしもテストに最適とは限りません。特に初めて手続きを行う場合は、認証プロセスにおいて、かなり緊密にラボと連携する必要があります。理想的には、テストを実施するラボに、製品の開発プロセス全体を通じて協力してもらうのが望ましいと言えます。試作品を開発するときは、ハードウェアを持参してラボを訪問するか、ハードウェアをラボに送付して、試作品の事前準拠テストを行います。 試作品を早期にテストすることで、問題が見つかった場合にハードウェアにタイムリーな変更を加えることができるので、最終製品だけをテストに送る場合と比較して、貴重な時間と費用を節約できます。問題が見つかった場合、優れたラボのエンジニアは、単に不適合だと伝えるのではなく、豊富な経験に基づいて問題の解決方法についてのアイデアを提供してくれるでしょう。さらに良いことに、 事前準拠テストに直接赴くことで、こうした提案の一部をその場で実装し、すぐに再テストすることができます。それにより、問題を列挙したリストではなく、変更点を列挙したリストを持ってオフィスに戻ることができるのです。 記事を読む
PCB設計におけるEMI/EMC基準の達成 PCB EMI/EMC ガイドライン:あなたの設計でEMI/EMC基準を満たす 1 min Blog もし、携帯電話を2台並べたら、突然どちらも正常に動かなくなったらどうでしょう?幸いにも、このようなことは起こりません。なぜなら、設計者や製造業者が、これらのデバイスが導電性および放射性の電磁干渉(EMI)に関するEMC基準に準拠するように、真剣な努力をしているからです。どのデバイスも、市場に出る前にEMC基準を満たしている必要があります。 これは複雑に聞こえるかもしれませんが、次のデバイスがEMCテストに合格するのを助けるための、いくつかのシンプルな設計戦略があります。さまざまなEMC基準団体とその仕様を知ることから始めるのが良いでしょう。 PCB設計のためのEMC/EMI基準 EMC基準は、規制基準と業界基準の2つの広いカテゴリーに分かれます。あなたの設計のための規制基準は、製品を市場に出して販売したい場所(必ずしもそれが設計されたり製造されたりする場所ではない)に依存します。最初のEMC基準のいくつかは、1979年にアメリカ合衆国連邦通信委員会によって確立されました。その後、ヨーロッパ共同体が独自のEMC基準を定義し、これが将来の欧州連合基準の基礎となり、現在はEMC指令として知られています - 正式には欧州議会の電磁両立性(EMC)指令2014/30/EUと命名されています( こちらからヨーロッパの基準を見ることができます)。 業界標準への適合は、法的な問題だけでなく、特定の環境やアプリケーション領域で展開される電子機器の一貫性と相互運用性を保証するための業界固有の問題でもあります。効果的に、業界のEMC標準は、製造、組立、性能などの他の業界標準と同じ役割を果たします。EMC要件を定義する主要な業界標準機関および規制機関には、 米国連邦通信委員会(FCC) 米国連邦航空局(FAA) アンダーライター・ラボラトリーズ(UL) アメリカ無線技術委員会(RTCA) 国際電気標準会議(IEC)、通じて国際特別無線障害委員会(CISPR) 国際標準化機構(ISO) 自動車技術者協会(SAE) 電気電子技術者協会(IEEE) 米国軍を通じてのMIL-STD標準セット IECおよびCISPRの標準はヨーロッパでより人気がありますが、IEEEの標準は米国でより人気があります。特に、IEEEの標準はアンテナ校正試験の基礎を形成します。MIL-STDのEMC要件は、世界で最も厳格な標準の中の一つであり、電子機器の商業セクターに適応される最初の標準のいくつかでした。 EMC標準に準拠するための広範な要件 企業が非準拠のデバイスや製品をリリースした場合、警告を受けるか、 記事を読む
アプリケーションでリジッドフレキシブル技術が必ずしも利用されないのはなぜですか? アプリケーションでリジッドフレキシブル技術が必ずしも利用されないのはなぜですか? 1 min Blog アプリケーションで、リジッドフレキシブル技術が必ずしも利用されないのはなぜですか? よい質問ですね!リジッドフレキシブル技術は、リジッド基板とフレキシブル回路のハイブリッドで、両者の利点を最大限に活かした技術です。フレキシブルな部分は、取り付け時(折り曲げて取り付ける)や完成品での使用時(動的に折り曲げる)に折り曲げることができるため、スペース、重量、パッケージングの問題の解決に有効です。リジッドな部分は、高密度コンポーネントの領域を確保し、より多くの層数、複雑な配線、基板の両面への表面実装を可能にします。どのアプリケーションにもこの構造を使用することが私には理にかなっています! より現実的なことを言えば、特定の設計で使用する技術を選択する際、コストはほとんど常に検討すべき要素となります。リジッドフレキシブルは、あらゆる利点を備えていますが、必ずしも最適な総コストの解決策になるとは限りません。この後のブログで、リジッド回路、またはフレキシブル回路のコストではなく、設計の総コストをリジッドフレキシブル設計と比較することの重要性についてお話しします。ここでは、フレキシブル、およびリジッドフレキシブル基板の製造コストが、標準的なリジッド基板よりも高い理由を考えてみましょう。 第一に、標準的なFR4ラミネートに比べて、単純に原材料が高価です。PCB市場では、リジッド基板の材料よりもフレキシブル基板の材料の消費量が少なく、原材料のコストに顕著な差が生じています。 第二に、フレキシブル基板の材料は、場合によっては取り扱いが難しいことがあります。設計者は、薄くて軽量で折り曲げや折りたたみが可能であるという理由でフレキシブル基板の材料を選択しますが、これらの材料は製造中に特別な注意が必要です。18” x 24”、または12” x 18”で、厚さがほんの2~3 milのラミネートを思い浮かべてみてください。まるで紙片を支えるようなものです。わずかなはためきでも、回路の作成時に銅箔にくぼみやしわが発生する可能性があります。 フレキシブル基板の場合、製造業者は、特別な手順で取り扱う必要があります。例えば、ラミネートを平らに保つには、材料の相対する角のみを持ち上げます。施設内で材料を移送する場合は通常、特殊なトレイまたは棚付きカートが必要です。ほとんどのPCB製造用ウェットプロセス装置はローラーベースであるため、フレキシブル基板の材料では、パネルがローラーに巻き込まれないように、テープで固定されたリーダー基板とテープで固定されていないリーダー基板がプロセス全体で必要になることがよくあります。 リジッド回路とフレキシブル回路の材料のコストと処理要件を比較すると、フレキシブル基板の方が高価な理由がわかります。より複雑なリジッド構造では、異種材料のラミネートと製造に必要な特殊加工により、コスト差が広がります。リジッドフレキシブルの構造の違いがコストにどのように影響するかを理解することも重要だと思います。 通常、最も単純で安価な選択肢は、リジッドな外層を持つリジッドフレキシブル基板と、すべてのリジッド層が同じ厚さを持つフレキシブル相互接続層です。これは最も一般的なリジッドフレキシブル基板の構造ですが、前のブログ記事でも申し上げたように、フレキシブル、およびリジッドフレキシブルが独創的な設計を可能にします。例えば、特定の設計ソリューションでは、フレキシブル領域にメッキスルーホールが必要です。確かにそれは可能ですが、製造工程で追加処理のために余分なコストがかかります。簡単に言うと、フレキシブル層は、スタックアップの残りの部分に組み込む前に、スルーホールを作成するために「ウェットプロセス」の工程が必要です。 パッケージングの問題を解決するもう1つの独特な方法は、特定のフレキシブル層、またはテールを別々の部分に分割する方法です。例えば、フレキシブル層1と2をある一方向に、フレキシブル層3と4を別の方向に、フレキシブル層5と6をさらに別の方向に移動します。これは、リジッドフレキシブル技術のとても良い使い方です! ただしこの構造は、前述した単純なバージョンに比べ、製造中にはるかに多くの処理が必要です。このような複雑な設計を行う方法はいくつかありますが、不必要なコストを増やさないよう、設計プロセスの早い段階で製造者と協力することを強くお勧めします。 最初の質問に答えるなら、リジッドフレキシブル技術では、リジッド回路とフレキシブル回路の両者の利点を活用できます。ただし、主にコストの問題で、すべてのアプリケーションに使用することはできないと言えます。リジッドフレキシブルの製造は、リジッド基板やフレキシブル回路の製造よりも複雑です。リジッドフレキシブル技術でパッケージングの問題を解決できない場合は、単に回路自体のコストではなく、設計の総コストを考える必要があります。多くの場合、リジッドフレキシブルによってワイヤ、ケーブル、およびその他の部品表項目を除外できるので、コストを節約できます。このトピックについてはこの後のブログで取り上げますので、引き続きご注目ください! 今すぐ Altium Designer の無償評価版をリクエストして、世界最高のPCB設計ソリューションをお試しください!ご不明な点などございましたら、 記事を読む
トレースインピーダンス計算機と公式の解説 トレースインピーダンス計算機と公式の解明 1 min Blog 一見すると明らかではないかもしれませんが、PCB設計の基礎となる数学がほぼ確定していると考える人にとっても、トレースインピーダンスを計算する正しい式については多くの意見の相違があります。この意見の相違は、オンラインのトレースインピーダンス計算機にも及んでおり、設計者はこれらのツールの限界を認識しておくべきです。 トレースインピーダンス計算機の問題点 お気に入りの検索エンジンを使用してトレース インピーダンス計算機を探すと、いくつか見つかります。これらのオンライン計算機の中には、異なる会社からのフリーウェアプログラムがある一方で、出典を示さずに式だけをリストしているものもあります。これらの計算機の中には、特定の前提条件をリストせず、関連する近似を詳細に説明せずに結果を出力するものもあります。 これらの点は、例えば、印刷トレースアンテナのためのインピーダンスマッチングネットワークを設計する際に非常に重要です。一部の計算機では、ブロードサイド結合、埋め込みマイクロストリップ、対称または非対称ストリップライン、または通常のマイクロストリップなど、さまざまなジオメトリでトレースインピーダンスを計算することができます。他の計算機はブラックボックスのようなもので、どの式を使用しているのか、これらの計算の正確性を他の多くの計算機と比較することなしに確認する方法がありません。 TRANSLATE: ダグラス・ブルックスが 2011年10月の記事で述べたように、「多くの設計者の意見として、現在十分と考えられるインピーダンスの公式は存在しない。」トレースインピーダンスの公式の数学を細かく分析し、トレースインピーダンスの完全な解決策を提供することは、この記事の範囲を超えています。代わりに、IPCがよく指定する経験的トレースインピーダンスの公式と、 Transmission Line Design Handbookのブライアン・ワデルによって提供されたより正確な方程式を見てみましょう。これらは ウィーラーの方法論に基づいています。 IPC-2141対ウィーラーの方程式(マイクロストリップ用) IPC-2141規格は、 マイクロストリップとストリップラインのインピーダンスに関する経験的方程式の一つの情報源に過ぎません。しかし、IPC-2141のマイクロストリップトレースの公式は、ウィーラーによって提示された方程式よりも正確さに欠けます。 Polar Instrumentsは、このトピックの簡単な概要を提供しており、この記事ではIPC-2141の方程式とウィーラーの方程式がリストされています。 特性トレースインピーダンスのためのIPC-2141方程式 これらの方程式の精度は、異なるインピーダンスを持つマイクロストリップトレースについても、Polar 記事を読む
設計プロセスの初期段階での予算見積もり 設計プロセスの初期段階での予算見積もり 1 min Blog 大量生産される新製品は常にプロトタイプから始まり、製品設計と開発プロセスを通じて複数のボードが組み立てられることになります。関連するコストは、プロトタイピングの各段階で、そして途中で厳しく検討されなければなりません。これを行う一つの方法は、設計に対する予算見積もりを依頼することです。 予算見積もりは、PCBの調達、組み立てサービス、および組み立て部品の見積もりを提供します。これらの点と予想されるプロトタイピングラウンドの数に基づいて、製品を量産に移行する前に製品開発予算を作成することが可能です。 開発予算のための予算見積もりを取得する必要がある場合は、以下に概説した情報を確実に取得してください。 予算見積もりの最も重要なポイント 予算見積もりを取得する適切な時期は、新製品の最初のプロトタイプを製造する直前です。これは、設計が最終化され、製造に送られる直前に行うことができます。予算見積もりは、設計がプロトタイプ製造に入る前に、プロトタイプのコストの合理的な見積もりを提供します。 これを行うには、製造所と組み立て所に、予備の出力ファイル(通常は ガーバーファイル、ドリル、およびBOM)を提出する必要があります。 コミュニケーションでは明確であることを心掛けてください:提供する出力は予算見積もりの目的のみに使用されます。 設計が不完全な状態で出力を生成することは全く問題ありません。通常、全ての配置が完了し、PCBレイアウトのルーティングが70-80%程度完了している段階です。予算見積もりを取得できるように、製造業者に以下の情報を提供してください: 生産する基板の種類と数量(フレックス、リジッドフレックス、 PTFE、ハイブリッド構造など) 最小エッチング特徴サイズと最小ドリル特徴サイズ ビアの種類:ブラインド/バリード、ビアインパッド、プラグ/フィル&キャップ、ホールウォールメッキ、バックドリリングなど。 表面めっきタイプ カウンターシンク/カウンターボア、エッジめっき、カットアウトなどの特別な機能 エンジニアリングレビューなどの追加サービス 組立工場はBOMから予算見積もりを出します。ユニークなラインの数、配置の総数、最小のSMDパッケージサイズ、最小のピンピッチサイズ、リードレス部品(BGA、LGA、QFN)の数、および両面組立てが必要な特殊部品の数を使用して、組立コストを決定します。この予算見積もりの部分は、BOMが確定している限り、非常に正確になります。 品質要件は何ですか? IPCクラス2、IPCクラス3、MIL-31032は、見積もりに含めることが重要な異なる要件と異なる価格帯を持っています。第三者によるテストの要件はありますか?これも総コストに影響を与えます。 最小のドリル穴サイズは何ですか? 記事を読む
高速PCB設計 PCBシグナル:高速PCB設計の重要要素 2 min Blog 課題の理解 どれくらいが長すぎるのか? インピーダンスのマッチング リターンエネルギーはどこで流れるのか? 差動ペア ビアについては? クロストーク 時間に合わせて踊る 基板 材料 レイヤー 可能なレイヤースタックアップ 課題の理解 この記事の目的は、高速設計の主要な要素を紹介し、それぞれの要素がAltium Designerでどのように取り組まれているかを議論することです。この記事は高速設計の完全な議論を提供しようとするものではありません。そのため、高度に経験豊富で学識深い設計者やエンジニアが、この主題に関して優れた参考文献や書籍を多数執筆しています。この記事の研究中に使用された著者や論文へのリンクについては、 参考文献 セクションを参照してください。 PCB設計が高速設計であるとは具体적にはどういうことでしょうか?確かにそれは物事が迅速に行われることに関係していますが、ボード上で使用されるクロックレートだけの話ではありません。デバイスが高速でエッジを切り替えるとき、つまり、信号がルートを伝わってターゲットピンに到達する前に遷移が完了するほど迅速に状態が切り替わるデバイスが含まれている場合、その設計は高速設計とされます。この状況では、信号がソースピンに反射され、元の信号データが劣化または破壊される可能性があります。高速エッジを持つ信号は、ルートから放射して隣接するルートにカップリングすることも、さらに放射して電磁干渉(EMI)となり、製品が強制的な放射基準を満たさなくなることもあります。 信号に高速のエッジがある場合、エネルギーがルーティングを通じて移動する方法が変わります。エッジレートがゆっくりと変化する回路では、エネルギーがパイプを通って水が流れるように、ルーティングを通じてエネルギーが流れると考えることができます。はい、水がパイプを押し通される際に摩擦によっていくらかのエネルギーが失われますが、基本的にはそのほとんどが他端に到達します。DCまたは低切替え周波数の回路では、ルートの抵抗を計算し、途中で失われるエネルギーの量が回路の性能に影響を与えないようにすることができます。 高速設計ではそれほど単純ではありません。なぜなら、配線された銅を通じて電子として流れるエネルギーだけでなく、高速で切り替わる信号では、そのエネルギーの一部が配線された銅の周りを電磁エネルギーとして移動するからです。これで、あなたはもはや電子のための銅の経路を設計しているのではなく、プリント基板に埋め込まれた一連の伝送路を設計しているのです。 記事を読む