Pi. MX8 プロジェクト - ボードレイアウト パート1

Lukas Henkel
|  投稿日 二月 22, 2024  |  更新日 七月 1, 2024
Pi. MX8_Chapter_III

チャプター

1
Introduction and Overview
| Created: January 18, 2024
2
Component placement and layout planning
| Created: February 06, 2024
3
Board Layout Part 1
| Created: February 22, 2024
4
Board Layout Part 2
| Created: March 21, 2024
5
Board Layout Part 3
| Created: June 24, 2024
6
Board Layout Part 4
| Created: July 23, 2024
7
PCB Assembly
| Coming soon

Pi.MX8オープンソースコンピュータモジュールプロジェクトの第3回へようこそ!この記事シリーズでは、NXPのi.MX8Mプラスプロセッサをベースにしたシステムオンモジュールの設計とテストについて詳しく説明します。

ボタンのテスト


前回の更新では、モジュールの回路図の構造を見て、予備的な部品配置の準備を始めました。部品を配置した今、設計の密度とそれがレイヤースタックに要求することがどの程度かがよくわかります。今日は、適切なスタックアップを選択し、最初のトラックのルーティングを開始します。

レイヤースタックの定義

部品配置といくつかの戦略的要因に基づいて、今後の設計に使用したいPCB技術とレイヤースタックを決定できます。まずは部品の密度を見てみましょう:

部品配置 トップサイド

部品配置 トップサイド

予備的な部品配置により、全体的な設計の密度が適度であることが明らかになりました。アクティブな部品はすべて基板のトップサイドに配置され、ボトムサイドには主にデカップリングキャパシタやその他の受動回路が含まれています。そのため、基板のボトムサイドは比較的空いており、ルーティングスペースがたくさんあります。しかし、目標は、このスペースをPi.MX8モジュールが特定の要求に基づいて更新および拡張されるプラットフォームとして機能するために実装される追加機能に割り当てることです。

部品配置 ボトムサイド

部品配置 ボトムサイド

ボード間コネクタに近い部品の配置を見ると、多くの部品がボードの反対側にあるコネクタの直上に配置されていることに気づきます。上層から下層まで全てのレイヤースタックを接続する標準的なVIAのみを使用することにした場合、これらのエリアにVIAを配置することはできません。ボード間コネクタの全てのピンをブレイクアウトし、コネクタの反対側にあるアクティブ回路を効率的にルーティングするためには、スルーホールVIAのみに頼ることを超えた方法を考案する必要があります。これには、HDIスタックアップを使用する必要があります。

HDIスタックを使用すると、後の段階でモジュールの機能を拡張することが容易になります。追加の部品を接続するためにスルーホールVIAを必ずしも使用する必要がなく、したがって、確立されたルーティングや部品配置をあまり妨げることなく済みます。

Pi.MX8モジュールには、2+N+2レイヤースタックを使用します。これはIPC-2226規格で定義されているタイプIIIレイヤースタックであり、最も一般的に使用されるHDIスタックの一つです。

このタイプのスタックアップは、製造プロセス中に2回の連続した積層工程を使用して、最外層の3層を接続するマイクロVIAを可能にします。埋め込みVIAは、連続製造プロセスの一部ではないコアスタックを接続するために使用されます。このタイプのレイヤースタックで使用されるプリプレグとプリプレグの厚さは、PCBプロバイダーの製造能力に依存します。連続積層されたプリプレグの選択された厚さは、マイクロVIAのアスペクト比によって制限されます。機械的にドリルされたVIAとは異なり、マイクロVIAは短いレーザーパルスを使用してプリプレグに穴を開けることによって作成されます。通常、VIAの直径は0.08mmから0.15mmが使用されます。大量製造に適したアスペクト比は通常、0.6:1~0.8:1の範囲です。

薄いプリプレグは、アスペクト比の要件を違反せずに、与えられたインピーダンス制御トレースのトラック幅を減少させることを保証します。上層または下層の単純なマイクロストリップで、参照平面が1つだけの場合、これは問題ではありません。しかし、最初のグラウンドプレーンの下にある埋め込みストリップラインには注意が必要です。ストリップラインの上下の参照平面までの短い距離が、特定のインピーダンス制御インターフェースのために非常に狭いトレースをもたらす可能性があります。

Pi.MX8ボードの最終スタックアップは、PCBメーカーとの協力のもとに作成され、以下のようになります:

Pi.MX8レイヤースタック

Pi.MX8レイヤースタック

全体として、このモジュールは10層スタックアップで構築されます。トップ、L2、L7、およびボトムレイヤーが信号レイヤーとして使用されます。L1、L3、L6、L8レイヤーがグラウンドプレーンとして使用されます。残りの2層、L4とL5は電源プレーンとして機能します。電源プレーンは、わずか18μmの厚さの薄い箔を使用して構築されます。これらの層のIRドロップに注意を払う必要があります。電源プレーンは、隣接するグラウンドプレーンとわずか75μmのプリプレグで分離されて密接に結合されています。これにより、追加のプレーン容量が生じ、高周波で低PDNインピーダンスを提供するのに有益です。レイアウトが完成したら、PDNの挙動をシミュレーションで確認します。

このスタックアップについて注意すべきもう一つの重要な点は、スタックされたマイクロビアではなく、スタッガードマイクロビアのみを使用することです。これは、マイクロビアを直接重ねて配置することができず、代わりに少なくとも0.35mmのピッチで中心から中心にオフセットする必要があることを意味します。スタッガードビアの使用は、連続するレイヤーの登録を容易にするため、一部のPCBプロバイダーでは製造コストを削減します。このアプローチは、2つ以上のマイクロビアプログラムを使用するHDIスタックアップで、マイクロビアの信頼性を高めるためにも推奨されます。スタッガードマイクロビアを使用するデメリットは、最小オフセット要件を満たすために必要な追加のスペースです。グラウンドプレーンに作成された空隙も、隣接するトレースのリターンパスを管理する際に考慮する必要があります。

コンポーネントブレークアウトルーティング

レイヤースタックが定義された今、次のステップは個々のコンポーネントの信号をブレークアウトすることです。このステップでは、各コンポーネントの信号および電源ルーティングに必要なビアを配置します。コンポーネントを接続し始める前に、できればすべてのビアを配置しておきたいと考えています。HDIスタックアップであっても、ビアは依然として多くのスペースを占めます。これは、通常、スタックアップ全体を通過する電源配布ネットワークの一部であるビアに特に当てはまります。ルーティング段階でビアを配置すると、ビアのためにスペースを作るために以前にルーティングされたトレースを削除する必要があるかもしれません。

モジュールのトップレイヤーでのブレークアウトルーティング

モジュールのトップレイヤーでのブレークアウトルーティング

上の画像では、ほとんどのコンポーネントピンがビアを使用してブレークアウトされているか、未接続のままになっていることがわかります。未接続のパッドは、トップレイヤーでルーティングされるか、後でブレークアウトルーティングを追加するための追加スペースが提供されます。後者の場合、それらのエリア内にトレースを配置しないことが重要です。

一部のコンポーネントでは、ブレークアウトルーティングを可能にするために、トレース幅と間隔の事前定義された設計ルールをローカルで上書きする必要があります。その一例がi.MX8 SoCです。わずか0.5mmの小さなピンピッチは、0.08mmのトレース幅と0.085mmのトレースからパッドまでの間隔を要求します。これらのブレークアウトエリアの外側では、100umのトレース幅と間隔のルールで作業を続けたいと考えています。この振る舞いを設計ルールに実装する方法はいくつかあります。一つの方法は、専用のセットのルールが割り当てられた追加のデザインルームを使用することです。これにより、カーソルがデザインルームの境界を越えるとトレース幅が自動的に調整されるため、スムーズなルーティングワークフローが可能になります。

i.MX8のブレークアウトルーティングのためのトレース幅と間隔の要件

i.MX8のブレークアウトルーティングのためのトレース幅と間隔の要件

デザインルームを使用すると、インタラクティブルーティング中にトレース幅が自動的に調整されます:

 

次のアップデートでは、レイヤースタックのインピーダンスプロファイルに従って一般的な設計ルールがどのように設定されるか、および内層でのルーティングにどのようにアプローチするかを探ります。選択されたHDIスタックアップによって導入された困難をどのようにナビゲートし、メモリレイアウトに対処するかを知るために、お楽しみに!

筆者について

筆者について

Lukas is a passionate hardware designer with more than 10 years of experience in the electronics industry. As a co-founder of his own engineering services company, he has had the privilege of working on many exciting projects, taking on challenges ranging from precision analogue design to high-speed PCB layout and power electronics.

As a strong supporter of the open-source philosophy, Lukas has made it his goal to give anyone interested an insight into the construction and functioning of modern electronic devices. Driven by that goal, he has founded the company Open Visions Technology (OV Tech GmbH), which aims to bring highly repairable, fully documented state-of-the-art consumer hardware to the market.

Lukas firmly believes that with today's online access to know-how and tools, anyone with an idea, drive, and passion can create extraordinary things. He is looking forward to being part of an enthusiastic community and is excited to see how people bring their ideas to life.

関連リソース

関連する技術文書

ホームに戻る
Thank you, you are now subscribed to updates.