Skip to main content
Mobile menu
PCB設計
Altium Designer
世界中の設計者に支持される回路・基板設計ソフトウェア
CircuitStudio
エントリーレベルでプロ仕様のPCB設計ツール
CircuitMaker
個人、オープンソース、非営利団体のための無料PCB設計ツール
Altiumに乗り換える理由
他のPCB設計ツールからAltiumに乗り換える理由と方法を確認する
ソリューション
Altium Enterprise ソリューション
デジタルトランスフォメーションへの 最終ステップ
電子部品プラットフォーム
世界中の技術者が利用するOctopart
Altium 365
リソース&サポート
製品情報
無償評価版
ダウンロード
拡張機能
リソース&サポート
Renesas / Altium CEO Letter To Customers
全てのリソース
サポートセンター
マニュアル
Webセミナー
コミュニティ
フォーラム
バグの報告
アイディア
教育
専門家育成トレーニング 資格取得プログラム
Comprehensive Career Training for Altium Software and Design Tools
大学・高専
Academic Licenses, Training, Sponsorships and Certificates for Higher Education
オンラインストア
Search Open
Search
Search Close
サインイン
シグナルインテグリティ
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
無料トライアル
SPICE: Certainty for All Decisions
Design, validate, and verify the most advanced schematics.
Learn More
シグナルインテグリティ
TRANSLATE:
DDR5 vs. DDR6: RAMモジュールで何を期待するか
デザイナーがDDR5とDDR6 RAMで何を期待できるか?次のメモリデバイスに期待できることをここで紹介します。
記事を読む
S11パラメーターとリターンロスと反射係数: これらが同じになるときとは?
リターンロスと反射係数、S11パラメーターの違いは何ですか?この記事に答えが記載されています。
記事を読む
ABCDパラメーターとSパラメーターからの伝送線路の伝達関数
高周波数とデータ転送速度のチャンネルは、モード選択伝送線路として配線できます。この配線手法を検討する必要があるのは、次の場合です。
記事を読む
PCB分析向けABCDパラメーターの利点
SI(シグナルインテグリティー)エンジニアは常にSパラメーターのことをよく口にしますが、回路設計と分析用の代替ツールはABCDパラメーターです。
記事を読む
ストリップライン対マイクロストリップ トレース幅での所望のインピーダンス:それらは同じですか?
ストリップラインとマイクロストリップの幅の値はかなり異なります。単純に交換することはできません。その理由と、PCBから何を期待できるかを詳しく見ていきましょう。
記事を読む
データ転送速度と帯域幅の違いは何ですか?
データ転送速度と帯域幅の違いはこの30年間ずっと曖昧でした。データ転送速度と帯域幅の関係をご紹介します。
記事を読む
グラウンドプレーンがない差動ペア:問題ですか?
一部の設計者は、グラウンドがない差動ペアでも問題ないと言います。では、誰が正しいのでしょうか?差動ペアのグラウンドプレーンの利点と欠点を検討します。
記事を読む
高Dk PCB材料の利点
「高速設計」と「低Dk PCBラミネート」の用語は、しばしば同じ記事で、そしてしばしば同じ文で使用されます。低Dk PCB材料は、高速および高周波PCBにおいてその場を持っていますが、高Dk PCB材料は電力の整合性を提供します。低Dk PCBは、一般に損失正接が低い傾向にあるため選ばれます。したがって、高Dk PCB材料は、高速および高周波PCBに対して見過ごされがちです。 高速/高周波ボードの電力の整合性を見るとき、単に信号損失を受け入れるか、高速ラミネートによって提供される値を受け入れるのではなく、安定した電力のための全体的な戦略の一部として誘電率定数を考慮すべきです。これには、PCBの電力の整合性に影響を与える誘電率定数の実部と虚部の両方が含まれます。これを念頭に置いて、電力の整合性を確保するために高Dk PCB材料が果たす役割を見てみましょう。 高Dk PCB材料とPCB電力の整合性 まず最初に、電力の整合性を見るとき、常にレギュレータ段階から出力される電圧が
記事を読む
IoTデバイスとデザインのためのセルラーモジュールの使用
セルラー・インターネット・オブ・シングス製品は、標準的なセルラーモデムモジュールやトランシーバー部品のおかげで、広くアクセス可能で、設計も容易です。
記事を読む
PCBにおけるシグナルインテグリティー解析の基本
シグナルインテグリティー解析の重要な手順と、これらの手順によってPCBレイアウトの問題が特定されるかについて説明しています。
記事を読む
高速信号の遅延チューニングの予備知識
今後の高データ速度PCBで遅延チューニングを行うにあたって役立つ予備知識についてご説明します。
記事を読む
オシロスコープの基礎:初心者向けガイド
オシロスコープの使い方が気になりますか?新しい電子エンジニアのためのオシロスコープの基本についてもっと学ぶために、Mark Harrisのこのガイドを読んでください。
記事を読む
GNSS + LTE Asset Tracker プロジェクト パート1
今週のプロジェクトでは、LTEベースのアセット追跡システムを構築します。このシステムは、盗難防止(および原状復帰)、配送または輸送車両の追跡の他、収集したデータを適切な機械学習サービスと組み合わせて使用した場合には予測保守まで、さまざまな用途で使用できます。これまでのプロジェクトはすべて、スペースに制約のない2層の基板でしたが、本当にコンパクトな高密度回路基板も構築してみたかったので、このプロジェクトではできるだけ小さな基板を構築することを目指します。やるべきことはたくさんあるので、まずは目標の設定と、部品の選択および回路図について検討し、続いて パート 2でPCBの設計とレイアウトに着目していきます。 このようなプロジェクトにはさまざまな用途があります。バスや旅客車両に搭載すると、GNSSデータが運輸会社に報告され、位置情報の更新が可能になります。続いてその情報を使用して、次の便の到着予想時間を顧客に提供することができ、さらに規模を拡大して
記事を読む
TRANSLATE:
銅箔の粗さが信号とインピーダンスに与える影響
工学、特に電気工学と機械工学の歴史は、途中で役立たずになった近似値で溢れています。これらの近似値は一時期はうまく機能し、数十年にわたって技術を大きく前進させました。しかし、どんなモデルにも適用可能な限界があり、典型的なRLCG伝送線モデルや周波数非依存のインピーダンス方程式も例外ではありません。 では、これらの方程式の問題は何でしょうか?上級のPCBエンジニアや製造業者はこれらを頻繁に引用し、それらを福音のように見せかけますが、多くの複雑な技術概念と同様に、これらのモデルや方程式はしばしば十分な文脈なしで伝えられます。ここで物理学が醜い顔を出し、モデルが引き続き適用可能であるためには変更が必要だと告げます。 銅箔の粗さモデリングや関連する伝送線インピーダンスシミュレーションは、標準モデルが信号の振る舞いを正しく扱えない多くの領域のうちの一つです。 銅箔の粗さがインピーダンスと損失にどのように影響するか 伝送線インピーダンスのRLGCモデルを見ると
記事を読む
PCBテストクーポンの設計方法とテストできる内容
コンポーネントの動作速度が上がるにつれて、デジタル、アナログ、混合信号システムにおいて制御インピーダンスが一般的になってきています。インターコネクトの制御インピーダンス値が正しくない場合、インサーキットテスト中にこの問題を特定するのが非常に難しくなります。わずかな不一致がボードの故障を引き起こさない場合がありますが、テスト失敗の原因として不正確なインピーダンスを特定するのは難しい場合があります。特に、ベアボードインピーダンステストを容易にするために、正しいテストポイントやテスト構造がボードに配置されていない場合はそうです。 インピーダンスは多くのパラメータ(トレースの形状、ラミネートの厚さ、ラミネートのDk値)に依存するため、現在のところ、大多数のPCBは制御インピーダンスのためにテストされています。ただし、テストは通常、PCBと同じパネル上で製造されたPCBテストクーポンで実施されます(通常は端に沿って)。ボードスピンを迅速に進め、将来の設計を支援したい場合は
記事を読む
伝送線路インピーダンス測定:偶数モード対奇数モード
正確な伝送線インピーダンス測定が必要な場合、次のボードで使用する必要がある重要な値はこちらです。
記事を読む
伝送線路インピーダンス:重要な6つの値
様々な伝送線路のインピーダンス値を見ていくと、特性インピーダンスと差動インピーダンスが重要な値として際立っています。これらは通常、信号規格で指定されているからです。しかし、PCB設計において重要な伝送線路のインピーダンス値は実際には6つあります。テキストブックや技術記事によっては7つある場合もあります。 特性インピーダンスの方程式は、多くの記事や教科書で簡単に見つけることができますが、他の一般的な伝送線路のインピーダンス値を計算するのはより困難です。この困難さは、複数の伝送線路の配置とそれらの間の結合の強さに依存しているためです。他の典型的なインピーダンス値は、線路の長さと任意のインピーダンスの不一致に依存する入力インピーダンスです。 伝送線路インピーダンス値 PCB設計およびルーティングの一環として理解する重要な伝送線路インピーダンス値をここに示します。 特性インピーダンス 「伝送線路インピーダンス」という用語をGoogleで検索すると
記事を読む
Pagination
First page
« First
Previous page
‹‹
ページ
2
ページ
3
現在のページ
4
ページ
5
ページ
6
ページ
7
Next page
››
Last page
Last »
他のコンテンツを表示する